The easy way to support your child with maths at home

Weekly online lessons

Maths specialist tutors

Regular progress reports

Trusted by schools, now available for families

Online one to one lessons from specialist maths tutors

Book a tutor

Hundreds of FREE home learning resources!

Used by thousands of teachers: games, worksheets, daily activities and more! Register for FREE now
KS2 SATs
• Free SATs Papers to Get Year 6 Ready for KS2 SATs 2021
Classroom Teaching
Maths Mastery
Maths Interventions
For Parents
• “I Was Wrong About Third Space” – A Headteacher’s Review

Trusted by schools, now available for families

Online one to one lessons from specialist maths tutors

Book a tutor

# Partitioning Explained For Primary School Parents And Kids

Partioning is a phrase that even the youngest primary school child will probably know. Here we show you how Year 2 children are taught this skill to help them break down any number into its component parts.

This blog is part of our series of blogs designed for parents supporting home learning and looking for free home learning resources during the Covid-19 epidemic.

### What is partitioning?

Partitioning is a way of splitting numbers into smaller parts to make them easier to work with. Partitioning links closely to place value: a child will be taught to recognise that the number 54 represents 5 tens and 4 ones, which shows how the number can be partitioned into 50 and 4. By moving tens and ones between the two parts, the number can be partitioned in many other ways:

When shown a number (up to 7+ digits by Year 6), children should be able to partition them independently to show good understanding of place value. For example, 5,202,086 = 5,000,000 + 200,000 + 2,000 + 80 + 6.

#### When will my child learn about partitioning in primary school?

Children will most likely learn about partitioning very early on in their maths lessons, but it is first mentioned in the National Curriculum as non-statutory guidance for Year 2:

Pupils should partition numbers in different ways (for example, 23 = 20 + 3 and 23 = 10 + 13) to support subtraction. They become fluent and apply their knowledge of numbers to reason with, discuss and solve problems that emphasise the value of each digit in two-digit numbers. They begin to understand zero as a place holder.

In Year 3, the non-statutory guidance advises that children use larger numbers to at least 1000, applying partitioning related to place value using varied and increasingly complex problems, building on work in year 2 (for example, 146 = 100 + 40 and 6, 146 = 130 + 16).

#### How does partitioning relate to other areas of maths?

Children will use partitioning in many other areas of maths:

• Introducing column addition: 56 + 78 may be first calculated as (50 + 70) + (6 + 8)
• Introducing column subtraction: 56 – 22 may be first calculated as (50 – 20) + (6 – 2)
• Understanding exchanging in column subtraction: 32 – 18 may be first calculated as (30 – 10) + (2 – 8) until children realise that they can’t subtract 8 from 2 without reaching a minus number. Partitioning is important here in understanding why exchanging works. 32 can be partitioned into 20 + 12, so this subtraction can be recalculated as (20 – 10) + (12 – 8)
• Introducing multiplication: 34 x 6 may be first calculated as (30 x 6) + (4 x 6)

Wondering about how to explain other key maths vocabulary to your children? Check out our Primary Maths Dictionary, or try these other terms:

### Practice questions

1) Write the missing numbers.
361 = ___ + 60 + 1 300
945 = 900 + __ + 5     40

2) If Write the value of each diagram. (1st = 1,231)    (2nd = 2,013)

3) Match the sums that have the same answer.

(2nd box to 1st box; 3rd box to 2nd box; 4th box to 4th box)

4) 700 + 20 + 3 =             (723)
3,000 + 40 + 2 =         (3,042)
2,000 + 300 =             (2,300)

Our online tuition for maths programme provides every child with their own professional one to one maths tutor

x ##### Hi, we have a free lesson pack for you 