GCSE Tutoring Programme
Our chosen students improved 1.19 of a grade on average - 0.45 more than those who didn't have the tutoring.
In order to access this I need to be confident with:
Factorising Factorising quadratics Expanding brackets Simplifying algebraic expressionsThis topic is relevant for:
Here we will learn about the quadratic formula and how we can use it to solve quadratic equations.
There are also solving quadratic equations worksheets based on Edexcel, AQA and OCR exam questions, along with further guidance on where to go next if youβre still stuck.
The quadratic formula is a formula that provides the solutions to quadratic equations.
This is the quadratic formula:
By using the general form of a quadratic equation:
we can substitute the values of
We need to memorise the quadratic formula.
Quadratic equations normally have two solutions, so we need to use the formula twice, once with a + and once with a β.
The solutions to quadratic equations could involve fractions, decimals or integers.
Get your free quadratic formula worksheet of 20+ questions and answers. Includes reasoning and applied questions.
DOWNLOAD FREEGet your free quadratic formula worksheet of 20+ questions and answers. Includes reasoning and applied questions.
DOWNLOAD FREEQuadratic formula is part of our series of lessons to support revision on quadratic equations and solving equations. You may find it helpful to start with the main solving equations lesson for a summary of what to expect, or use the step by step guides below for further detail on individual topics. Other lessons in this series include:
In order to solve a quadratic equation by using the quadratic formula, it is a good idea to simplify it and make sure it is in the form of the general quadratic equation.
We must ensure the quadratic equation is equal to 0, rearranging it if necessary.
Step by step guide:
Step-by-step guide: Substitution
Solve
2Substitute these values into the quadratic formula.
Using brackets will help to make the calculation clear.
3Use a calculator to solve the equation with a +, and then with a β.
When we plot the graph of the quadratic equation we get a special βUβ shaped curve called a parabola.
By using graphing techniques such as this we can see that the roots of the quadratic equation are where the quadratic graph crosses the
We can check that our solution is correct by substituting it back into the quadratic function.
To solve
Identify theΒ a, b and c.
Substitute these values into the quadratic formula.
Using brackets will help to make the calculation clear.
Use a calculator to solve the equation with a +, and then with a β.
We can see the roots of the quadratic equation are where the quadratic graph crosses the
We can check that our solution is correct by substituting it into the original equation.
We can use the quadratic formula to solve quadratic equations regardless of whether the factorising (sometimes called factoring) method will work.
When writing the coefficients of the variables for the values of
So here
Mistakes can be made when typing into a calculator.
E.g. for
Use the fraction button and brackets to carefully type into the calculator.
Use the arrow buttons to change the + on the top left of the calculation to a β to work out the second solution.
E.g.
We can see that there are no values of
The graph does not cross the
There is an easy way to find out how many real roots a quadratic equation has by using the expression under the square root in the quadratic formula:
This is called the discriminant:
this means there are two solutions (these are real numbers).
this means there is one solution (which is a real number).
this means there are no real solutions, here the solutions will be imaginary numbers.
1. Solve:
{x}^2+4x+3=0
We can use the quadratic formula with a=1, b=4 and c=3 . Make sure you find both solutions using the formula.
2. Solve:
{x}^2+3x-18=0
We can use the quadratic formula with a=1, b=3 and c=-18 . Make sure you find both solutions using the formula.
3. Solve:
2{x}^2-3x-2=0
We can use the quadratic formula with a=2, b=-3 and c=-2 . Make sure you find both solutions using the formula.
4. Solve:
3{x}^2-4x-5=0
We can use the quadratic formula with a=3, b=-4 and c=-5 . Make sure you find both solutions using the formula.
1. Solve:
x^{2}+2x-4=0
Give your answer to 2.d.p
(3 marks)
Substitution into the quadratic formula
(1)
x=1.24 (2.d.p)
(1)
x=-3.24 (2.d.p)
(1)
2. Solve:
2x^{2}-3x+1=0
(3 marks)
Substitution into the quadratic formula or an attempt to factorise
(1)
x=1
(1)
x=\frac{1}{2} \quad
(1)
3. Solve:
3 x^{2}+6 x-2=0
Give your answer to 2.d.p
(3 marks)
Substitution into the quadratic formula
(1)
x=0.29 (2.d.p)
(1)
x=-2.29 (2.d.p)
(1)
Prepare your KS4 students for maths GCSEs success with Third Space Learning. Weekly online one to one GCSE maths revision lessons delivered by expert maths tutors.
Find out more about our GCSE maths tuition programme.