One to one maths interventions built for GCSE success

Weekly online one to one GCSE maths revision lessons available in the spring term

Find out more
GCSE Maths Algebra Sequences

Nth Term of a Sequence

Nth Term Of A Sequence

Here we will learn about how to find the nth term of an arithmetic sequence. You’ll learn what the nth term is and how to work it out from number sequences and patterns.

At the end you’ll find nth term worksheets based on Edexcel, AQA and OCR exam questions, along with further guidance on where to go next if you’re still stuck.

What is the nth term?

The nth term is a formula that enables us to find any term in a sequence. The ‘n’ stands for the term number.

We can make a sequence using the nth term by substituting different values for the term number(n).

To find the 10th term we would follow the formula for the sequence but substitute 10 instead of ‘n’; to find the 50th term we would substitute 50 instead of n.

For example if the nth term = 2n + 1

  • To find the first term we substitute n = 1 into the nth term.

1st term =  2(1) + 1 = 3

  • To find the second term we substitute n = 2 into the nth term.

2nd term =  2(2) + 1 = 5

  • To find the third term we substitute n = 3 into the nth term.

3rd term =  2(3) + 1 = 7

To find the tenth term we substitute n = 10 into the nth term.

  • 10th term =  2(10) + 1 = 21

Below are a few examples of different types of sequences and their nth term formula.

Type of Sequence

Arithmetic

Geometric

Quadratic

Cubic

Example

6, 2, -2, -6, -10, …

1, 2, 4, 8, 16, 32, …

3, 9, 19, 33, 51, …

2, 22, 78, 188, 370, …

  Nth Term

  10 − 4n

  2n -1

  2n2 + 1

  3n3 − n

In this lesson, we will look specifically at finding the nth term for an arithmetic or linear sequence.

What is the nth term?

What is the nth term?

Nth term worksheet

Nth term worksheet

Nth term worksheet

Get your free nth term worksheet of 20+ questions and answers. Includes reasoning and applied questions.

DOWNLOAD FREE
x
Nth term worksheet

Nth term worksheet

Nth term worksheet

Get your free nth term worksheet of 20+ questions and answers. Includes reasoning and applied questions.

DOWNLOAD FREE

To find out more about the different types of sequences, and how to answer sequence related questions you may find it helpful to look at the introduction to sequences lesson or one of the others in this section.

How to find the nth term

The nth term of an arithmetic sequence is given by :

a_{n}=a_{1}+(n-1) d

To find the nth term, first calculate the common difference, d.

Next multiply each term number of the sequence (n = 1, 2, 3, …) by the common difference.

Then add or subtract a number from the new sequence to achieve a copy of the sequence given in the question. 

This will give you the nth term term in the form an + b where a and b are unknown values that we will have calculated.

To summarise, in order to find the nth term of an arithmetic sequence:

  1. Find the common difference for the sequence.
  2. Multiply the values for n = 1, 2, 3.
  3. Add or subtract a number to obtain the sequence given in the question.

Explain how to find the nth term of an artihmetic sequence in 3 steps

Explain how to find the nth term of an artihmetic sequence in 3 steps

Nth term formula

  • The nth term formula for an arithmetic sequence is:

a_n=a_1+(n-1)d

Where,

a_{n} is the n^{th} term (general term)

a_{n} is the first term

n is the term position

d is the common difference

  • The nth term formula for a geometric sequence is:

a_n=a_1(r)^{n-1}

Where,

a_{n} is the n^{th} term (general term)

a_{1} is the first term

n is the term position

r is the common ratio

  • The nth term formula for a quadratic sequence is:

an^2+bn+c

Where,

a, b and c are constants (numbers on their own)

n is the term position

a + b + c is the first term

3a + b is the first difference between

2a is the second difference

Nth term examples

Example 1: find the nth term for an increasing arithmetic sequence

Find the nth term for the sequence 5, 9, 13, 17, 21, ….

  1. Find the common difference for the sequence.

Here, 9 − 5 = 4.

The common difference d = 4.

2  Multiply the values for n = 1, 2, 3, … by the common difference.

Here, we generate the sequence 4n = 4, 8, 12, 16, 20, …. (the 4 times table).

3 Add or subtract a number to obtain the sequence given in the question.

The nth term of this sequence is 4n + 1.

Example 2: find the nth term for a decreasing sequence, including negative numbers

Find the nth term for the sequence 3, 1, -1, -3, -5, ….


Here, 1 − 3 = -2


The common difference d = -2.


Here, we generate the sequence -2n = -2, -4, -6, -8, -10, … (the multiples of -2).


The nth term of this sequence is -2n + 5  (or 5 − 2n).

Example 3: find the nth term of a sequence including decimals.

Find the nth term for the sequence 0.2, 0.5, 0.8, 1.1, 1.4, ….


Here, 1.1 − 0.8 = 0.3


The common difference d = 0.3.


Here, we generate the sequence 0.3n = 0.3, 0.6, 0.9, 1.2, 1.5, … (the multiples of 0.3).


The nth term of this sequence is 0.3n − 0.1 or

\[\frac{3 n-1}{10}\]

Example 4: find the nth term of a sequence including negatives and decimals

Find the nth term for the sequence -9.1, -8.3, -7.5, -6.7, -5.9, ….


Here, -8.3 − (-9.1) = -8.3 + 9.1 = 0.8


The common difference d = 0.8.


Here, we generate the sequence 0.8n = 0.8, 1.6, 2.4, 3.2, 4, … (the multiples of 0.8).


The nth term of this sequence is 0.8n − 9.9.

Example 5: find the nth term of a sequence including fractions

Find the nth term for the sequence

\[\frac{1}{4}, \frac{5}{8}, 1,1 \frac{3}{8}, 1 \frac{3}{4}, \ldots\]


Here,

\[\frac{5}{8}-\frac{1}{4}=\frac{5}{8}-\frac{2}{8}=\frac{3}{8}\]


The common difference

\[d=\frac{3}{8}\]


Here, we generate the sequence


\[\frac{3 n}{8}=\frac{3}{8}, \frac{3}{4}, 1 \frac{1}{8}, 1 \frac{1}{2}, 1 \frac{7}{7}, \ldots\]


\[\left ( \text{the multiples of }\frac{3}{8} \right ).\]


The nth term of this sequence is

\[\frac{3 n}{8}-\frac{1}{8} \text { or } \frac{3 n-1}{8}\]

Example 6: find the nth term when interpreting a pattern

Using the patterns below, write an expression for the number of lines in pattern n.

By counting the number of sides we can see that the first term in the sequence is 12.


The second term in the sequence is 21.


The next term 30.



Here, 21 − 12 = -9


The common difference d = 9.


Here, we generate the sequence 9n = 9, 18, 27, 36, 45, … (the multiples of 9).


The nth term of this sequence is 9n + 3.

Common misconceptions

  • The common difference is used as the constant instead of the multiplier

For example, the sequence 3, 6, 9, 12, 15, … has the nth term 3n but is incorrectly written as n + 3.

  • The nth term is incorrectly simplified

For example, if the nth term of a sequence is equal to 6n − 4, the solution would be incorrectly simplified to 2n.

  • For decreasing sequences, the nth term has a positive common difference

For example, taking the decreasing sequence -2, -4, -6, -8, -10, … which has the nth term of -2n but is incorrectly stated as 2n which would be an increasing sequence. This is also true with the constant.

Practice nth term questions

1. Write down the first three terms in the sequence 4n-7 .

4, -3, -10
GCSE Quiz False

-3, -10, -17
GCSE Quiz False

4, 11, 18
GCSE Quiz False

-3, 1, 5
GCSE Quiz True
\begin{array}{l} 4 \times 1 – 7 = -3\\\\ 4 \times 2 – 7 = 1 \\\\ 4 \times 3 -7 = 5 \end{array}

2. Below is a table describing the position of each term in an arithmetic sequence and the value of these terms.

State the value of the first term in the sequence.

\begin{aligned} &\quad n \quad \quad 1 \quad \quad2 \quad \quad 3 \quad \quad 4 \quad \quad 5 \\ &an + b \quad \quad  \quad 8.7 \quad 15.9 \quad \quad \quad 30.3 \end{aligned}

7.2
GCSE Quiz False

0
GCSE Quiz False

23.1
GCSE Quiz False

1.5
GCSE Quiz True

It is an arithmetic sequence meaning the difference between each term is the same.

15.9-8.7 = 7.2 so the difference between each term is 7.2 .

8.7-7.2=1.5 therefore the first term is 1.5 .

3. Below are the first 5 terms of an arithmetic sequence.

8, \quad 13, \quad 18, \quad 23, \quad 28, …

Find the n^{th}  term of the sequence.

n+5
GCSE Quiz False

5n-3
GCSE Quiz False

5n+3
GCSE Quiz True

2n
GCSE Quiz False

The common difference here is 5 so it is 5n .

To get from 5n to our sequence we need to add 3 so our sequence is 5n+3 .

4. Find the n^{th} term formula of the sequence:

-10, \quad-20, \quad -30 \quad -40 \quad -50, …

10n-20
GCSE Quiz False

-10n-10
GCSE Quiz False

-10n
GCSE Quiz True

-10n+10
GCSE Quiz False

The common difference  is -10 so it is -10n

We do not need to add or subtract anything here so the nth term is just -10n .

5. The number of petals on a sunflower can be represented as a linear sequence.

Write an expression for the number of petals on sunflower n .

2n+5
GCSE Quiz False

2n+3
GCSE Quiz True

2n-3
GCSE Quiz False

5n
GCSE Quiz False

The number of petals on the first three flowers are 5, 7 and 9 .

We need to find the n^{th} term of this sequence.

The common difference is 2 so it is 2n .

We need to add 3 to the sequence 2n so the expression is 2n+3 .

6. The number of square tiles around a pool generates an arithmetic sequence.

How many tiles would there be around a pool of width 30 ?

124
GCSE Quiz True

120
GCSE Quiz False

240
GCSE Quiz False

116
GCSE Quiz False

Around the first three pools, the number of tiles are 8, 12 and 16 .

The n^{th}  formula for this sequence is 4n+4.

Substituting n = 30 , 4 \times 30 + 4 = 124 .

7. Find the n^{th} term of the linear sequence:

2 \frac{1}{3}, \; \; 2 \frac{2}{3}, \; \; 3, \; \; 3 \frac{1}{3}, \; \; 3 \frac{2}{3}, \ldots

\frac{n}{3}+2
GCSE Quiz True

2n+ \frac{1}{3}
GCSE Quiz False

3n-2
GCSE Quiz False

2n+3
GCSE Quiz False

The common difference is \frac{1}{3} so it is  \frac{1}{3} n .

Another way of writing this is \frac{n}{3} .

Nth term GCSE questions

1.  A sequence of patterns is made using triangles.

(a) What is the n^{th} term formula for the number of triangles?

(b) How many dark purple triangles would there be in pattern number 100 ?

(3 marks)

Show answer

(a)

Sequence 1, 3, 5, 7 – common difference is 2

(1)

2n – 1

(1)

(b)

99 (one less than the pattern number)

(1)

2.  (a)  Write down an expression for the n^{th}  term of the following sequence:

 

-4, -1, 2, 5, 8, ….

 

(b)  Is the number 101 in this sequence? Show how you decide.

(4 marks)

Show answer

(a)

Common difference is 3

(1)

 

3n-7

(1)

 

(b)

3n  −  7 = 101

(1)

 

\begin{aligned} 3n&=108\\\\ n&=36 \end{aligned}

Yes it is the 36th term

(1)

3. The n^{th}  of a sequence is 2n + 3 .

 

The n^{th}  of a different sequence is 5n − 2 .

 

There are two numbers under 30 that appear in both sequences. What are the two numbers?

(3 marks)

Show answer

2n + 3: 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29,..  

(1)

 

5n − 2: 3, 8, 13, 18, 23, 28, …

(1)

 

13  and 23

(1)

Learning checklist

You have now learned how to:

  • Recognise arithmetic sequences
  • Find the nth term

Still stuck?

Prepare your KS4 students for maths GCSEs success with Third Space Learning. Weekly online one to one GCSE maths revision lessons delivered by expert maths tutors.

Find out more about our GCSE maths revision programme.