GCSE Tutoring Programme

Our chosen students improved 1.19 of a grade on average - 0.45 more than those who didn't have the tutoring.

Teacher-trusted tutoring

3D Trigonometry

Here we will learn about 3D trigonometry including how to combine your knowledge of Pythagoras’ Theorem, Trigonometric Ratios, The Sine Rule and The Cosine Rule and apply it to find missing angles and sides of triangles in 3-dimensional shapes.

There are also 3D trigonometry worksheets based on Edexcel, AQA and OCR exam questions, along with further guidance on where to go next if you’re still stuck.

What is 3D trigonometry?

3D trigonometry is an application of the trigonometric skills developed for 2 dimensional triangles.

To find missing sides or angles in 3 dimensional shapes, we need to be very clear which rules and formulae we need to use in order to find different angles and side lengths.

The flowchart below can help determine which function you need to use:

3D Trigonometry Image 1

You may need to carry out this process several times in a question to fully answer what is being asked. You must be able to justify which rule or formulae you need to use.

Top Tip: Look out for common angles or common sides.

What is 3D trigonometry?

What is 3D trigonometry?

How to use 3D trigonometry to find a missing angle or side length

In order to find a missing angle or side within a 3-dimensional shape:

  1. Calculate the necessary missing angle or side of a triangle.
  2. Sketch and label the second triangle using information from Step 1.
  3. Calculate the missing angle or side of the final triangle.

Explain how to use 3D Trigonometry to find a missing angle or side length.

Explain how to use 3D Trigonometry to find a missing angle or side length.

3D trigonometry worksheet

3D trigonometry worksheet

3D trigonometry worksheet

Get your free 3D trigonometry worksheet of 20+ questions and answers. Includes reasoning and applied questions.

DOWNLOAD FREE
x
3D trigonometry worksheet

3D trigonometry worksheet

3D trigonometry worksheet

Get your free 3D trigonometry worksheet of 20+ questions and answers. Includes reasoning and applied questions.

DOWNLOAD FREE

3D trigonometry examples

Example 1: missing side using trigonometry and Pythagoras’ theorem

The diagram shows a cuboid.

3D Trigonometry (Example 1)

Calculate the length of the line AH . Write your answer in the form a\sqrt{b}\mathrm{cm} where a and b are integers.

  1. Calculate the necessary missing angle or side of a triangle.

The line FH is shared between the two triangles EFH and AFH. We can find the length of FH by using simple trigonometric ratios.

3D Trigonometry (Example 1 Step 1)

Here we need to find the value of FH (the hypotenuse):

\[\begin{aligned} H&=\frac{O}{\sin(\theta)}\\\\ H&=\frac{18}{\sin(30)}\\\\ H&=36\mathrm{cm}\\\\ FH&=36\mathrm{cm} \end{aligned} \]

2Sketch and label the second triangle using information from step 1.

3D Trigonometry (Example 1 Step 2)

3Calculate the missing angle or side of the final triangle.

AFH is a right angle triangle, so we can use Pythagoras’ Theorem to find the value of x:

\[\begin{aligned} c^{2}&=a^{2}+b^{2}\\\\ x^{2}&=24^{2}+36^{2}\\\\ x^{2}&=1872\\\\ x&=12\sqrt{13}\mathrm{cm} \end{aligned} \]

Example 2: finding length using trigonometric ratios

ABCDEF is an isosceles triangular prism. DF is 7cm, Angle DFE is 75o and angle ECF is 40o. Find the length of the line CE.

3D Trigonometry (Example 2)

Calculate the necessary missing angle or side of a triangle.

Sketch and label the second triangle using information from step 1.

Calculate the missing angle or side of the final triangle.

Example 3:  missing angle including midpoint

ABCDEFGH is a cuboid with the following information:

  • The front face of the cuboid is a square.
  • The midpoint M lies half-way between E and F .
  • The line AC is at 30o from the line AB .
  • BCM is a triangle.
  • AC = 52cm
  • CE=26\sqrt{3}

Using the diagram below, calculate the size of angle BMC, to 2 decimal places.

3D Trigonometry (Example 3) I

Calculate the necessary missing angle or side of a triangle.

Sketch and label the second triangle using information from step 1.

Calculate the missing angle or side of the final triangle.

Example 4: missing angle using the cosine rule

ABCDEFGH is a cuboid. BH, FH and BF are straight lines that connect to make a triangle BFH. Using the information in the diagram, calculate the size of angle HFB.

3D Trigonometry (Example 4)

Calculate the necessary missing angle or side of a triangle.

Sketch and label the second triangle using information from step 1.

Calculate the missing angle or side of the final triangle.

Example 5: missing angle using the sine rule

The diagram shows a triangular prism.

  • Angle DEC = 50ΒΊ
  • Angle EBC = 55ΒΊ
  • AE = AD

3D Trigonometry (Example 5)

The angle Ο΄ lies between the two lines CE and BE. Calculate the size of angle Ο΄. Show all your working.

Calculate the necessary missing angle or side of a triangle.

Sketch and label the second triangle using information from step 1.

Calculate the missing angle or side of the final triangle.

Example 6: missing side using the sine rule

The diagram shows a cylinder:

  • A, B and D are points on the circumference of the circles.
  • C is the centre of the circle.
  • ABC is a triangle
  • AD is the diameter of the cylinder.

3D Trigonometry (Example 6) Image 19

By calculating the size of angle \theta , work out the height of the cylinder.

Calculate the necessary missing angle or side of a triangle.

Sketch and label the second triangle using information from step 1.

Calculate the missing angle or side of the final triangle

Common misconceptions

  • Using Pythagoras’ Theorem instead of trigonometry

Using two sides of a non right-angle triangle to find the third side instead of using the cosine rule.

  • Incorrect trigonometric ratio used

Incorrect labelling of any triangle can lead to the wrong trig function being used.

  • Confusing the Sine Rule with the Cosine Rule

Misunderstanding when to use the sine rule or cosine rule to find a missing side or angle.

  • Using the inverse trig function instead and inducing a mathematical error

If the inverse trig function is used instead of the standard trig function, the calculator may return a maths error as the solution does not exist.

3D trigonometry is part of our series of lessons to support revision on trigonometry. You may find it helpful to start with the main trigonometry lesson for a summary of what to expect, or use the step by step guides below for further detail on individual topics. Other lessons in this series include:

Practice 3D trigonometry questions

1. ABCDEFGH is a cuboid. Calculate the length of DF to 2 decimal places.

 

9.04cm
GCSE Quiz False

10.33cm
GCSE Quiz True

7.53cm
GCSE Quiz False

15.82cm
GCSE Quiz False

Let’s first look at triangle FGH:

 

 

We want to know the length of FH which is the opposite.Β 

 

\begin{aligned} O&=A \tan(\theta)\\\\ O&=17 \tan(28)\\\\ O&=9.039060338 \mathrm{cm} \end{aligned}

 

Now that we know the length of FH , we can consider the triangle DFH:

 

 

Since we know two sides and we want to calculate the third side, we can use Pythagoras Theorem:

 

 \begin{aligned}
c^{2}&=a^{2}+b^{2}\\\\
c^{2}&=5^{2}+9.039060338^{2}\\\\
c^{2}&=106.7046118\\\\
c&=\sqrt{106.7046118}\\\\
c&=10.33 \mathrm{cm}
\end{aligned} 

2. ABCDEF is a triangular prism. Calculate the angle DAE . Give your answer to 1 dp.

 

 

43.7^{\circ}
GCSE Quiz False

21.0^{\circ}
GCSE Quiz False

35.8^{\circ}
GCSE Quiz True

39.3^{\circ}
GCSE Quiz False

First we need to look at the triangle DEF:

 

 

We need to find the length of DE , which is the opposite.

 

\begin{aligned} O&=H \sin(\theta)\\\\ O&=9sin(62)\\\\ O&=7.946528336 \mathrm{cm} \end{aligned}

 

Now that we know the length of DE, we can consider the triangle ADE :

 

 

We want to find the angle DAE. We know O and A .

 

\begin{aligned} \tan(\theta)&=\frac{O}{A}\\\\ \tan(\theta)&=\frac{7.946528336}{11}\\\\ \theta&=\tan^{-1}(\frac{7.946528336}{11})\\\\ \theta&=35.8^{\circ} \end{aligned}

3. ABCDE is a square based pyramid. By finding the value of x , calculate the perimeter of the base of the pyramid, correct to 2 decimal places.

 

 

282.84m
GCSE Quiz True

400m
GCSE Quiz False

565.69m
GCSE Quiz False

70.71m
GCSE Quiz False

First we need to work out the value of x:

 

 

\begin{aligned} O&= H \sin(\theta)\\\\ O&=50 \sqrt{2} \sin(45)\\\\ O &=50 \mathrm{m} \end{aligned}

 

Now we can look at the base:

 

 

The length of the sides can be found using Pythagoras Theorem:

 

\begin{aligned} &c^2=a^2+b^2\\\\ &c^2=50^2+50^2\\\\ &c^2=5000\\\\ &c=70.71m \end{aligned}

 

Each side is 70.71m therefore the perimeter is:

4 \times 70.71=282.84 \mathrm{m}

4. Three satellites leave Earth on three different trajectories. 2 hours after launch, satellite A is 800km from Earth, satellite B is 500km from Earth and satellite C is 750km from Earth.

 

3D Trigonometry (Practice question 4)

 

Use the cosine rule to calculate the size of angle CAB at this point in time.

76.60^{\circ}
GCSE Quiz False

38.22^{\circ}
GCSE Quiz False

32.01^{\circ}
GCSE Quiz False

51.78^{\circ}
GCSE Quiz True

AB, AC and BC can all be worked out using Pythagoras Theorem:

 

\begin{aligned} &AB^2=500^2+800^2\\ &AB^2=890000\\ &AB=943.3981132\\\\ &AC^2=750^2+800^2\\ &AC^2=1202500\\ &AC=1096.58561\\\\ &BC^2=500^2+750^2\\ &BC^2=812500\\ &BC=901.388189\\ \end{aligned}

 

We can then apply the cosine rule:

 

 

The length of the sides can be found using Pythagoras Theorem:

 

\begin{aligned} \cos(A)&=\frac{b^{2}+c^{2}-a^{2}}{2bc}\\\\ \cos(A)&=\frac{1096.58561^{2}+943.3981132^{2}-901.388189^{2}}{2 \times 1096.58562 \times 943.3981132}\\\\ \cos(A)&=0.6186459892\\\\ A&=\cos^{-1}(0.6186459892)\\\\ A&=51.87^{\circ} \end{aligned}

5. Given that GH=10cm, work out the size of the angle GEH . Give your answer to 1 dp.

 

38.7^{\circ}
GCSE Quiz False

38.5^{\circ}
GCSE Quiz True

51.3^{\circ}
GCSE Quiz False

36.4^{\circ}
GCSE Quiz False

First we need to calculate the length of EH. We can do this using Pythagoras Theorem:

 

 

\begin{aligned} a^{2}&=c^{2}-b^{2}\\\\ a^{2}&=20^{2}-12^{2}\\\\ a^{2}&=256\\\\ a&=16 \mathrm{cm} \end{aligned}

 

We can now look at the triangle EGH:

 

 

We can calculate angle GEH using the sine rule:

 

\begin{aligned} \frac{\sin(A)}{a} &= \frac{sin(B)}{b}\\\\ \frac{\sin(\theta)}{10} &= \frac{sin(85)}{16}\\\\ \sin(\theta)&= \frac{sin(85)}{16} \times 10\\\\ \sin(\theta)&= 0.6226216863\\\\ \theta&= \sin^{-1}(0.6226216863)\\\\ \theta&=38.5^{\circ} \end{aligned}

6. ABCDEF is a triangular prism. X, Y, and Z are midpoints on each edge of the prism and triangle XYZ is isosceles. Using this information and the diagram to help you, calculate the size of angle XYZ.

 

3D Trigonometry (Practice question 6)

36.5^{\circ}
GCSE Quiz True

51.3^{\circ}
GCSE Quiz False

9.2^{\circ}
GCSE Quiz False

18.0^{\circ}
GCSE Quiz False

We need to calculate the length XZ using the triangle CXZ:

 

 

\begin{aligned} O&=A \tan(\theta)\\\\ O&=5 \tan(76)\\\\ O&=20.05390467 \mathrm{cm} \end{aligned}

 

We can now look at triangle XYZ:

 

 

Using the cosine rule:

 

\begin{aligned} \cos(A) &= \frac{b^{2}+c^{2}-a^{2}}{2bc}\\\\ \cos(\theta)&= \frac{32^{2}+32^{2}-20.05390467^{2}}{2 \times 32 \times 32}\\\\ \cos(\theta)&=0.8036332556\\\\ \theta&= \cos^{-1}(0.8036332556)\\\\ \theta&=36.5^{\circ} \end{aligned}

3D Trigonometry GCSE questions

1.Β  ABCDEFGH is a cuboid.

Calculate the angle between the diagonal DF and the base AEHD .

Give your answer to 3 sf.

 

3D Trigonometry (Exam question 1)

 

(4 marks)

Show answer

Triangle ADE:

 

DE^{2}=8^{2}+12^{2}

(1)

 

\begin{aligned} DE&=\sqrt{208}\\\\ DE&=14.4222\mathrm{cm} \end{aligned}

(1)

 

Triangle DEF:

 

\tan(\theta)=\frac{8}{14.4222}

(1)

 

\begin{aligned} \theta&=\tan^{-1}(\frac{8}{14.4222})\\\\ \theta&=29.0^{\circ} \end{aligned}

(1)

2.Β  ABCDEF is a triangular prism.

The cross-section of the prism is an isosceles triangle.

M is the midpoint of AC .

Calculate the length of EM .

 

3D Trigonometry (Exam question 2)

 

(4 marks)

Show answer
\tan(70)=\frac{x}{4.5}

(1)

 

\begin{aligned} 4.5\tan(70)&=x\\\\ 12.364&=x \end{aligned}

(1)

 

\begin{aligned} EM^{2}&=16^{2}+12.364^{2}\\\\ EM^{2}&=408.868 \end{aligned}

(1)

 

\begin{aligned} EM&=\sqrt{408.868}\\\\ EM&=20.2\mathrm{cm} \end{aligned}

(1)

3.Β  Find the size of the angle AFH .

 

 

(6 marks)

Show answer
\begin{aligned} AF^{2}&=8^{2}+5^{2}\\\\ AF&=9.434 \end{aligned}

(1)

 

\begin{aligned} FH^{2}&=17^{2}+5^{2}\\\\ FH&=17.720 \end{aligned}

(1)

 

\begin{aligned} AH^{2}&=17^{2}+8^{2}\\\\ AH&=18.788 \end{aligned}

(1)

 

\cos(x)=\frac{9.434^{2}+17.720^{2}-18.788^{2}}{2\times9.434\times17.720}

(1)

 

\cos(x)=0.1096

(1)

 

\begin{aligned} x&=\cos^{-1}(0.1496)\\\\ x&=81.4^{\circ} \end{aligned}

(1)

Learning checklist

You have now learned how to:

  • Apply Pythagoras’ Theorem and trigonometric ratios to find angles and lengths in right-angled triangles (and, where possible, general triangles) in 2 (and 3) dimensional figures

Still stuck?

Prepare your KS4 students for maths GCSEs success with Third Space Learning. Weekly online one to one GCSE maths revision lessons delivered by expert maths tutors.

GCSE Benefits

Find out more about our GCSE maths tuition programme.