Ordering‌ ‌Fractions‌

Here we will learn about ordering fractions.
There are also ordering fractions worksheets based on Edexcel, AQA and OCR exam questions, along with further guidance on where to go next if you’re still stuck.

What is ordering fractions?

Ordering fractions is where we rearrange a set of fractions so that the smallest is at the start, followed by the next smallest and so on. This is called ascending order.

To do this we rewrite the fractions so that they have the same denominators which we can then compare.

We can order any type of fraction including proper fractions, improper fractions and mixed numbers. 

E.g.

Write these fractions in ascending order:

In ascending order:

What is ordering fractions?

What is ordering fractions?

How to order fractions

In order to put fractions in ascending order:

  1. Write all the fractions so that they have a common denominator
  2. Find the smallest fraction by comparing the numerators and order the fractions
  3. Rewrite the numbers as they appear in the question in size order

Explain how to put fractions in ascending order in 3 steps

Explain how to put fractions in ascending order in 3 steps

Ordering fractions worksheet

Ordering fractions worksheet

Ordering fractions worksheet

Get your free ordering fractions worksheet of 20+ questions and answers. Includes reasoning and applied questions.

DOWNLOAD FREE
x
Ordering fractions worksheet

Ordering fractions worksheet

Ordering fractions worksheet

Get your free ordering fractions worksheet of 20+ questions and answers. Includes reasoning and applied questions.

DOWNLOAD FREE

Related lessons on fractions

Ordering fractionsΒ is part of our series of lessons to support revision onΒ fractions. You may find it helpful to start with the mainΒ fractionsΒ lesson for a summary of what to expect, or use the step by step guides below for further detail on individual topics. Other lessons in this series include:

Ordering fractions examples

Example 1: ordering proper fractions

Write the following fractions in order of size:

\[\frac{3}{4} \quad \quad \frac{1}{2} \quad \quad \frac{5}{6} \quad \quad \frac{7}{12}\]

  1. Write all the fractions so that they have a common denominator

The fractions have different denominators. 
The denominators of the fractions are 2, 4, 6 and 12. 2, 4 and 6 go into 12.
The lowest common multiple is 12, so we can convert the fractions so they have a common denominator of 12.

\[\frac{3\times3}{4\times3}=\frac{9}{12} \]

\[\frac{1\times6}{2\times6}=\frac{6}{12} \]

\[\frac{5\times2}{6\times2}=\frac{10}{12} \]

2Find the smallest fraction by comparing the numerators and order the fractions

Here are the fractions with their common denominator of 12

\[\frac{9}{12} \quad \quad \frac{6}{12} \quad \quad \frac{10}{12} \quad \quad \frac{7}{12} \]

Writing them in size order would give

\[\frac{6}{12} \quad \quad \frac{7}{12} \quad \quad \frac{9}{12} \quad \quad \frac{10}{12} \]

3Rewrite the numbers as they appear in the question in size order

\[\frac{6}{12} \quad \quad \frac{7}{12} \quad \quad \frac{9}{12} \quad \quad \frac{10}{12} \]

\[\frac{1}{2} \quad \quad \;\; \frac{7}{12} \quad \quad \;\frac{3}{4} \quad \quad \; \frac{5}{6}\]

Example 2: ordering proper fractions

Write the following fractions in order of size:

\[\frac{11}{30} \quad \quad \frac{4}{15} \quad \quad \frac{2}{5} \quad \quad \frac{1}{3} \]

Write all the fractions so that they have a common denominator

Find the smallest fraction by comparing the numerators and order the fractions

Rewrite the numbers as they appear in the question in size order

Example 3: ordering improper fractions and mixed numbers

Write the following fractions in order of size:

\[\frac{7}{4} \quad \quad 1\frac{1}{2} \quad \quad 1\frac{2}{3} \quad \quad \frac{29}{24}\]

Write all the fractions so that they have a common denominator

Find the smallest fraction by comparing the numerators and order the fractions

Rewrite the numbers as they appear in the question in size order

Example 4: ordering improper fractions and mixed numbers

Write the following fractions in order of size:

\[\frac{12}{5} \quad \quad 2\frac{3}{10} \quad \quad 2\frac{7}{20} \quad \quad \frac{9}{4} \]

Write all the fractions so that they have a common denominator

Find the smallest fraction by comparing the numerators and order the fractions

Rewrite the numbers as they appear in the question in size order

Example 5: ordering fractions and decimals

Write the following fractions in order of size:

\[\frac{3}{4} \quad \quad 0.55 \quad \quad \frac{1}{2} \quad \quad 0.6 \]

Write all the fractions so that they have a common denominator

Find the smallest fraction by comparing the numerators and order the fractions

Rewrite the numbers as they appear in the question in size order

Example 6: ordering fractions and decimals

Write the following numbers in order of size:

\[0.67 \quad \quad \frac{2}{3} \quad \quad 0.603 \quad \quad \frac{5}{8} \]

Write all the fractions so that they have a common denominator

Find the smallest fraction by comparing the numerators and order the fractions

Rewrite the numbers as they appear in the question in size order

Common misconceptions

  • Changing the numbers into the same type of fractions

It is much easier to change the fractions so that they have a common denominator and then compare the numerators.

  • Use decimals if the common denominator is too tricky to find

Sometimes finding a common denominator can be very difficult so it can be easier to convert the fractions to decimals and compare them instead.

  • Smallest to largest or largest to smallest?

Usually β€œin size order” means from smallest to largest.  But the question might want you to put the numbers in descending order from largest to smallest.

E.g.
Write these numbers in order of size from largest to smallest:

\[\frac{4}{7} \quad \quad\frac{11}{14}\quad \quad \frac{1}{2}\]

Convert the fractions so they have the same denominator:

\[\frac{8}{14} \quad \quad \frac{11}{14} \quad \quad \frac{7}{14}\]

Write the fractions in order of size from largest to smallest:

\[\frac{11}{14} \quad \quad\frac{8}{14} \quad \quad \frac{7}{14}\]

The final answer is:

\[\frac{11}{14} \quad \quad \frac{4}{7} \quad \quad \frac{1}{2} \]

Practice ordering fractions questions

1. Write these numbers in order of size:

 

\frac{5}{6} \quad \quad \frac{2}{3} \quad \quad \frac{1}{2} \quad \quad \frac{5}{12}

 

\frac{5}{12} \quad \quad \frac{2}{3} \quad \quad \frac{5}{6} \quad \quad \frac{1}{2}
GCSE Quiz False

\frac{5}{12} \quad \quad \frac{1}{2} \quad \quad \frac{2}{3} \quad \quad \frac{5}{6}
GCSE Quiz True

\frac{2}{3} \quad \quad \frac{1}{2} \quad \quad \frac{5}{12} \quad \quad \frac{5}{6}
GCSE Quiz False

\frac{1}{2} \quad \quad \frac{2}{3} \quad \quad \frac{5}{6} \quad \quad \frac{5}{12}
GCSE Quiz False
\frac{5}{12} \quad \quad \frac{1}{2}=\frac{6}{12} \quad \quad \frac{2}{3}=\frac{8}{12} \quad \quad \frac{5}{6}=\frac{10}{12}

2. Write these numbers in order of size:

 

\frac{5}{8} \quad \quad \frac{3}{4} \quad \quad \frac{13}{24} \quad \quad \frac{7}{12}

 

\frac{5}{8} \quad \quad \frac{13}{24} \quad \quad \frac{7}{12} \quad \quad \frac{3}{4}
GCSE Quiz False

\frac{13}{24} \quad \quad \frac{3}{4} \quad \quad \frac{7}{12} \quad \quad \frac{5}{8}
GCSE Quiz False

\frac{13}{24} \quad \quad \frac{7}{12} \quad \quad \frac{5}{8} \quad \quad \frac{3}{4}
GCSE Quiz True

\frac{3}{4} \quad \quad \frac{5}{8} \quad \quad \frac{7}{12} \quad \quad \frac{13}{24}
GCSE Quiz False
\frac{13}{24} \quad \quad \frac{7}{12}=\frac{14}{24} \quad \quad \frac{5}{8}=\frac{15}{24} \quad \quad \frac{3}{4}=\frac{18}{24}

3. Write these numbers in order of size:

 

1\frac{2}{5} \quad \quad \frac{19}{15} \quad \quad 1\frac{11}{30} \quad \quad \frac{7}{6}

 

\frac{7}{6} \quad \quad 1\frac{11}{30} \quad \quad 1\frac{2}{5} \quad \quad \frac{19}{15}
GCSE Quiz False

\frac{7}{6} \quad \quad \frac{19}{15} \quad \quad 1\frac{2}{5} \quad \quad 1\frac{11}{30}
GCSE Quiz False

\frac{7}{6} \quad \quad \frac{19}{15} \quad \quad 1\frac{11}{30} \quad \quad 1\frac{2}{5}
GCSE Quiz True

1\frac{2}{5} \quad \quad \frac{7}{6} \quad \quad \frac{19}{15} \quad \quad 1\frac{11}{30}
GCSE Quiz False
\frac{7}{6}=1\frac{5}{30} \quad \quad \frac{19}{15}=1\frac{8}{30} \quad \quad 1\frac{11}{30} \quad \quad 1\frac{2}{5}=1\frac{12}{30}

4. Write these numbers in order of size:

 

3\frac{7}{10} \quad \quad \frac{17}{5} \quad \quad 3\frac{3}{4} \quad \quad \frac{67}{20}

 

\frac{67}{20} \quad \quad \frac{17}{5} \quad \quad 3\frac{7}{10} \quad \quad 3\frac{3}{4}
GCSE Quiz True

3\frac{3}{4} \quad \quad 3\frac{7}{10} \quad \quad \frac{17}{5} \quad \quad \frac{67}{20}
GCSE Quiz False

3\frac{3}{4} \quad \quad \frac{17}{5} \quad \quad 3\frac{7}{10} \quad \quad \frac{67}{20}
GCSE Quiz False

\frac{67}{20} \quad \quad 3\frac{7}{10} \quad \quad \frac{17}{5} \quad \quad 3\frac{3}{4}
GCSE Quiz False
\frac{67}{20}=3\frac{7}{20} \quad \quad \frac{17}{5}=3\frac{8}{20} \quad \quad 3\frac{7}{10}=3\frac{14}{20} \quad \quad 3\frac{3}{4}=3\frac{15}{20}

5. Write these numbers in order of size:

 

\frac{1}{4} \quad \quad 0.2 \quad \quad \frac{1}{2} \quad \quad 0.3

 

0.2 \quad \quad \frac{1}{2} \quad \quad 0.3 \quad \quad \frac{1}{4}
GCSE Quiz False

0.2 \quad \quad \frac{1}{4} \quad \quad 0.3 \quad \quad \frac{1}{2}
GCSE Quiz True

0.3 \quad \quad \frac{1}{2} \quad \quad 0.2 \quad \quad \frac{1}{4}
GCSE Quiz False

\frac{1}{4} \quad \quad 0.3 \quad \quad \frac{1}{2} \quad \quad 0.2
GCSE Quiz False
0.2=0.20 \quad \quad \frac{1}{4}=0.25 \quad \quad 0.3=0.30 \quad \quad \frac{1}{2}=0.50

6. Write these numbers in order of size:

 

0.82 \quad \quad \frac{4}{5} \quad \quad 0.71 \quad \quad \frac{3}{4}

 

0.71 \quad \quad \frac{3}{4} \quad \quad \frac{4}{5} \quad \quad 0.82
GCSE Quiz True

0.71 \quad \quad \frac{3}{4} \quad \quad 0.82 \quad \quad \frac{4}{5}
GCSE Quiz False

0.71 \quad \quad \frac{4}{5} \quad \quad 0.82 \quad \quad \frac{3}{4}
GCSE Quiz False

\frac{3}{4} \quad \quad 0.71 \quad \quad 0.82 \quad \quad \frac{4}{5}
GCSE Quiz False
0.71=0.71 \quad \quad \frac{3}{4}=0.75 \quad \quad \frac{4}{5}=0.80 \quad \quad 0.82=0.82

Ordering fractions GCSE questions

1.Β  Β Here are four fractions:

 

\frac{17}{20} \quad \quad \frac{7}{10} \quad \quad \frac{3}{4} \quad \quad \frac{3}{5}


Write the fractions in order of size.

Starting with the smallest fraction.

 

(2 Marks)

Show answer
\frac{17}{20} \quad \quad \frac{7}{10}=\frac{14} {20} \quad \quad \frac{3}{5}=\frac{12}{20} \quad \quad \frac{3}{4}=\frac{15}{20}

(1)

 

\frac{3}{5} \quad \quad \frac{7}{10} \quad \quad \frac{3}{4} \quad \quad \frac{17}{20}

(1)

2. Here are four fractions:

 

\frac{2}{5} \quad \quad \frac{1}{4}\quad \quad \frac{4}{13}\quad \quad \frac{3}{10}


Write the fractions in order of size.

Starting with the smallest fraction.

 

(2 Marks)

Show answer
\frac{2}{5}=0.4 \quad \quad \frac{1}{4}=0.25 \quad \quad \frac{4}{13}=0.307… \quad \quad \frac{3}{10}=0.3

(1)

 

\frac{1}{4}\quad \quad \frac{3}{10}\quad \quad \frac{4}{13}\quad \quad \frac{2}{5}

(1)

3.Β Place the following numbers in order of size, smallest first:

 

2\frac{1}{4} \quad \quad 1.76^2 \quad \quad 2.14 \quad \quad \frac{17}{6}

 

(2 Marks)

Show answer
2\frac{1}{4}=2\frac{3}{12}=2.25 \quad \quad 1.76^2=3.0976 \quad \quad \frac{17}{6}=2\frac{10}{12}=2.833…

(1)

 

2.14 \quad \quad 2\frac{1}{4} \quad \quad \frac{17}{6} \quad \quad 1.76^2

(1)

Learning checklist

You have now learned how to:

  • Write fractions in order of size

Still stuck?

Prepare your KS4 students for maths GCSEs success with Third Space Learning. Weekly online one to one GCSE maths revision lessons delivered by expert maths tutors.

GCSE Benefits

Find out more about our GCSE maths tuition programme.