Math resources Geometry Area

Area of composite shapes

Area of composite shapes

Here you will learn about the area of composite shapes, including questions involving rectilinear shapes, composite shapes, missing side lengths and unit conversion.

Students will first learn about composite shapes as part of geometry in 3rd grade when they learn how to decompose and find the area of rectilinear shapes.

Students deepen their understanding of area in 4th grade, and extend their learning by finding the area of more complex shapes in 6th grade.

What is the area of composite shapes?

The area of composite shapes is the amount of space inside a shape composed of basic shapes put together. It is measured in square units ( cm^2, m^2, mm^2 etc.).

Composite shapes can also be called compound shapes or composite figures.

To find the area of composite shapes, you must decompose the composite shape into basic shapes, then find the area of each of the basic shapes and add them together.

For example,

Area of composite shapes image table 1


\begin{aligned} \hspace{0.5cm} \text{\color{#f22e76}Area of Shape A} \, + \, \text{\color{#1682e0}Area of Shape B} \, &= \, \text{Area of Compound Shape} \hspace{0.5cm} \\\\ {\color{#f22e76}(7m \times 2m)} \quad + \quad {\color{#1682e0}(3m \times 3m)} \quad \quad \, & = \\\\ {\color{#f22e76}14m^2} \quad \quad + \quad \quad {\color{#1682e0}9m^2} \quad \quad \quad \;\;\; &= \quad \quad \quad 23m^2 \end{aligned}

Your final answer must be in square units. For example, square centimeters (cm^2), square meters (m^2), square feet (ft^2), etc.

What is the area of composite shapes?

What is the area of composite shapes?

[FREE] Area of Composite Shapes Worksheet (Grade 3 to 8)

[FREE] Area of Composite Shapes Worksheet (Grade 3 to 8)

[FREE] Area of Composite Shapes Worksheet (Grade 3 to 8)

Use this worksheet to check your 3rd grade to 8th grade students’ understanding of calculating the area of composite shapes. 15 questions with answers to identify areas of strength and support!

DOWNLOAD FREE
x
[FREE] Area of Composite Shapes Worksheet (Grade 3 to 8)

[FREE] Area of Composite Shapes Worksheet (Grade 3 to 8)

[FREE] Area of Composite Shapes Worksheet (Grade 3 to 8)

Use this worksheet to check your 3rd grade to 8th grade students’ understanding of calculating the area of composite shapes. 15 questions with answers to identify areas of strength and support!

DOWNLOAD FREE

Common Core State Standards

How does this relate to 3rd grade math and 4th grade math?

  • Grade 3 – Measurement and Data (3.MD.7, 3.MD.7.d)
    Relate area to the operations of multiplication and addition; Recognize area as additive. Find areas of rectilinear figures by decomposing them into non-overlapping rectangles and adding the areas of the non-overlapping parts, applying this technique to solve real world problems.

  • Grade 4 – Measurement and Data (4.MD.3)
    Apply the area and perimeter formulas for rectangles in real world and mathematical problems. For example, find the width of a rectangular room given the area of the flooring and the length, by viewing the area formula as a multiplication equation with an unknown factor.

  • Grade 6 – Geometry (6.G.1)
    Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving real-world and mathematical problems.

How to find the area of composite shapes

Here’s how to find the area of composite shapes:

  1. Break down the composite shape into simpler shapes, such as rectangles, triangles, etc.
  2. Find the measurements and areas of the simpler shapes.
  3. Add the areas of the simpler shapes together.
  4. Write down your final answer with square units.

Area of composite shapes examples

Example 1: all side lengths given (area of a rectilinear figure)

Find the area of the composite shape below:

Area of Composite Shapes image 3 US

  1. Break down the composite shape into basic shapes.

Split the composite shape into two rectangles. You can do this in two ways:

Area of Composite Shapes image 4 US

For the purposes of this question you will use the first way.

2Find the measurements and area of the simpler shapes.

Label the two rectangles A and B.

Area of Composite Shapes image 5 US

Area of Rectangle A :

Area of Composite Shapes image 6 US

\begin{aligned} \text { Area }_{A} &=\text{ length } \times \text{ width } \\\\ \text { Area }_{A} &=6 \times 5 \\\\ &=30 \end{aligned}

Area of Rectangle B :

Area of Composite Shapes image 7 US

\begin{aligned} \text { Area }_{B} &=\text{ length } \times \text{ width } \\\\ \text { Area }_{B} &=9 \times 4 \\\\ &=36 \end{aligned}

3Add the areas of the simpler shapes together.

\begin{aligned} \text { Composite Area } &=\text{ Area of } A+ \text{ Area of } B \\\\ &= 30+36 \\\\ &=66 \end{aligned}

4Write down your final answer with square units.

\text{ Area }=66 \mathrm{~m}^{2}

Example 2: missing lengths

Find the area of the composite shape below:

Area of Composite Shapes image 8 US

Break down the composite shape into simpler shapes.

Find the measurements and areas of the simpler shapes.

Add the areas of the simpler shapes together.

Write down your final answer with square units.

Example 3: word problem

The wall shown below needs to be painted. Each tin of paint covers a distance of 4 square meters. How many tins of paint will be needed to cover the entire wall?

Area of Composite Shapes image 16 US

Break down the composite shape into simpler shapes.

Find the measurements and areas of the simpler shapes.

Add the areas of the simpler shapes together.

Write down your final answer with square units.

Example 4: composite shapes involving non-rectangular shapes

Find the area of the composite shape below:

Area of Composite Shapes image 22 US

Break down the composite shape into simpler shapes.

Find the measurements and areas of the simpler shapes.

Add the areas of the simpler shapes together.

Write down your final answer with square units.

Example 5: missing side lengths

Calculate the value of x in the composite shape below:

Area of Composite Shapes image 28 US

Break down the composite shape into simpler shapes.

Find the measurements and area of the simpler shapes.

Add the areas of the simpler shapes.

Example 6: multi-step word problem

Below is a blueprint for a garden to be created in the middle of town. It will feature a triangular flowerbed and the remainder of the garden will be covered in grass.

Each roll of grass costs \$24 and covers a distance of 3 square meters. How much will it cost to cover the garden with grass?

Area of Composite Shapes image 33 US

Break down the composite shape into simpler shapes.

Find the measurements and areas of the simpler shapes.

Add the areas of the simpler shapes.

Write down your final answer with square units.

[FREE] Area of Composite Shapes Worksheet (Grade 3 to 8)

[FREE] Area of Composite Shapes Worksheet (Grade 3 to 8)

[FREE] Area of Composite Shapes Worksheet (Grade 3 to 8)

Use this worksheet to check your 3rd grade to 8th grade students’ understanding of calculating the area of composite shapes. 15 questions with answers to identify areas of strength and support!

DOWNLOAD FREE
x
[FREE] Area of Composite Shapes Worksheet (Grade 3 to 8)

[FREE] Area of Composite Shapes Worksheet (Grade 3 to 8)

[FREE] Area of Composite Shapes Worksheet (Grade 3 to 8)

Use this worksheet to check your 3rd grade to 8th grade students’ understanding of calculating the area of composite shapes. 15 questions with answers to identify areas of strength and support!

DOWNLOAD FREE

Teaching tips for area of composite shapes

  • Start with simple shapes like two rectangles before moving onto more complex shapes like triangles and trapezoids.

  • Instead of worksheets, offer students a variety of ways to practice finding the area of composite shapes. One idea is for students to create composite shapes (either on paper, using manipulatives, or using an interactive website) and have a partner find the area.

Easy mistakes to make

  • Using incorrect units for the answer
    A common mistake is to forget to include square units when asked to find area.

  • Forgetting to convert measures to a common unit
    Before using the formula for calculating the area of a rectangle, you must look at the units given in the question. If different units are given, for example, length = 4 \, m and width = 3 \, cm, you must convert them either both to cm or both to m.

  • Trying to figure out a missing side length without calculating
    Often, it is possible to reason about the length of a missing side by comparing it to known sides. However, it is important to always use the given sides to calculate the missing side.
    For example,

    Area of Composite Shapes image 40 US

    Just by looking, it is pretty obvious the missing side is greater than 2 \, m and 4 \, m. It looks somewhere around 8 \, m. While making observations like this can serve as an estimation strategy – always calculate based on the measurements given to avoid mistakes.

Practice area of composite shapes questions

1. Find the area of the composite shape below:

 

Area of Composite Shapes image 41 US

80 \, m^2
GCSE Quiz False

65 \, m^2
GCSE Quiz True

50 \, m^2
GCSE Quiz False

65 \, m
GCSE Quiz False

Split into two rectangles. Find the area of the rectangle and the area of the square and add them together.

 

Area of Composite Shapes image 42 US

 

Area of A\text{: } 10 \times 5=50

 

Area of B\text{: } 5 \times 3=15

 

Composite Area: 50+15=65 \, m^2

2. Find the area of the composite shape below:

 

Area of Composite Shapes image 43 US

50 \, m^2
GCSE Quiz False

25 \, m^2
GCSE Quiz False

110 \, m^2
GCSE Quiz False

104 \, m^2
GCSE Quiz True

Split into two rectangles. Find the area of the smaller rectangle and the larger rectangle and add them together.

 

Area of Composite Shapes image 44 US

 

Area of A\text{: } 10 \times 5=50

 

Area of B\text{: } 9 \times 6=54

 

Composite Area: 50+54=104 \, m^2

3. The wall shown below needs to be painted. Each tin of paint covers a distance of 4 square meters. How many tins of paint will be needed to cover the entire wall?

 

Area of Composite Shapes image 44 US-1

166
GCSE Quiz False

41
GCSE Quiz False

150
GCSE Quiz False

42
GCSE Quiz True

Split into three rectangles:

 

Area of Composite Shapes image 45 US

 

Area of A\text{: } 15 \times 5=75

 

Area of B\text{: } 8 \times 2=16

 

Area of C\text{: } 15 \times 5=75

 

Composite Area: 75+16+75=166 \, m^2

 

Then divide by 4 to get the number of tins.

 

166 \, m^2 \div 4=41.5

 

Since you can’t buy 0.5 of a tin, the answer will be rounded up to 42 tins.

4. Find the area of the composite shape below:

 

Area of Composite Shapes image 46 US

95,000 \, cm^2
GCSE Quiz False

64,600 \, cm^2
GCSE Quiz False

79,800 \, cm^2
GCSE Quiz True

710 \, cm^2
GCSE Quiz False

Split into one rectangle and two triangles:

 

Area of Composite Shapes image 47 US

 

Since you know the triangles are congruent, you can use the base of the rectangle to find the base of the triangles.

 

380 \mathrm{~cm} \div 2=190 \mathrm{~cm}

 

Area of A\text{: } \cfrac{1}{2} \, (190 \times 80)=7,600

 

Area of B\text{: } \cfrac{1}{2} \, (190 \times 80)=7,600

 

Area of C\text{: } 170 \times 380=64,600

 

Composite Area: 7,600+7,600+64,6000=79,800 \mathrm{~m}^2

5. Find the value of x in the composite shape below:

 

Area of Composite Shapes image 48 US

4 \, mm
GCSE Quiz False

77 \, mm^2
GCSE Quiz False

22 \, mm
GCSE Quiz False

7 \, mm
GCSE Quiz True

Split into two rectangles:

 

Area of Composite Shapes image 49 US

 

Area of B\text{: } 4 \mathrm{~mm} \times 11 \mathrm{~mm}=44 \mathrm{~mm}^2

 

The difference between the total area and the area of rectangle B will give you the area of rectangle A\text{:}

 

56 \mathrm{~mm}^2-44 \mathrm{~mm}^2=12 \mathrm{~mm}^2

 

The area of rectangle A divide by its width will give you the missing side length:

 

12 \mathrm{~mm}^2 \div 3 \mathrm{~mm}=4 \mathrm{~mm}

 

The difference between the length of rectangle B and the length of rectangle A gives you the value of missing side length x.

 

11 \mathrm{~mm}-4 \mathrm{~mm}=7 \mathrm{~mm}

6. An architect is developing a blueprint for one floor of a house which is shown below. The shaded region represents the floor and will need to be fully tiled. Each square tile has a width of 12 \, cm. How many tiles will be needed to cover the entire floor?

 

Area of Composite Shapes image 50 US

77
GCSE Quiz False

4,931
GCSE Quiz True

71
GCSE Quiz False

6
GCSE Quiz False

To find the area of the shaded region, you need to first find the total area of the rectangle. Then find the area of the triangle.

 

Instead of adding the areas together, here you will be subtracting the areas.

 

Area of Composite Shapes image 51 US

 

Area of A\text{: } 7 \times 11=77

 

Area of B\text{: } \cfrac{1}{2} \, (4 \times 3)=6

 

\begin{aligned} & 77-6=71 \mathrm{~m}^2 \\\\ & 12 \mathrm{~cm}=0.12 \mathrm{~m} \end{aligned}

 

Area of 1 tile =0.12 \times 0.12=0.0144 \mathrm{~m}^2

 

71 \div 0.0144=4,930.56 tiles

 

4,931 tiles

Area of composite shapes FAQs

What is a composite shape?

A composite is a shape composed of basic shapes put together. A composite shape can also be called a compound shape or a composite figure.

How do you find the area of composite shapes?

To find the area of composite shapes, you must decompose the composite shape into basic shapes, then find the area of each of the basic shapes and add them together.

Still stuck?

At Third Space Learning, we specialize in helping teachers and school leaders to provide personalized math support for more of their students through high-quality, online one-on-one math tutoring delivered by subject experts.

Each week, our tutors support thousands of students who are at risk of not meeting their grade-level expectations, and help accelerate their progress and boost their confidence.

One on one math tuition

Find out how we can help your students achieve success with our math tutoring programs.

x

[FREE] Common Core Practice Tests (3rd to 8th Grade)

Prepare for math tests in your state with these 3rd Grade to 8th Grade practice assessments for Common Core and state equivalents.

Get your 6 multiple choice practice tests with detailed answers to support test prep, created by US math teachers for US math teachers!

Download free