Co-Interior Angles

Here we will learn about co-interior angles including how to recognise co-interior angles, and apply this understanding to solve problems.

There are also angles in parallel lines worksheets based on Edexcel, AQA and OCR exam questions, along with further guidance on where to go next if you’re still stuck.

What are co-interior angles?

Co-interior angles occur in between two parallel lines when they are intersected by a transversal. The two angles that occur on the same side of the transversal always add up to 180º.

Co-interior angles add up to 180º

Co interior angles image 1
 
    g + h = 180^{\circ}

      Co interior angles image 2
 
          i + j = 180^{\circ}

Co interior angles Image 3
 
    k + l = 180^{\circ}

      Co interior angles image 5
 
          m + n = 180^{\circ}

We can often spot co-interior angles by drawing a C shape.

Co interior angles image 6

The two interior angles are only equal when they are both 90º
In all other cases we can work out one of the co-interior angles by subtracting the other from 180º. 

What are co-interior angles?

What are co-interior angles?

How to calculate with co-interior angles

In order to find a missing angle in parallel lines:

  1. Highlight the angle(s) that you already know.
  2. State the alternate angle, co-interior angle or corresponding angle fact to find a missing angle in the diagram.
  3. Use basic angle facts to calculate the missing angle.

Steps 2 and 3 may be done in either order and may need to be repeated. Step 3 may not always be required.

Explain how to calculate with co-interior angles

Explain how to calculate with co-interior angles

Co-interior angles worksheet

Get your free co-interior angles worksheet of 20+ questions and answers. Includes reasoning and applied questions.

COMING SOON
x

Co-interior angles worksheet

Get your free co-interior angles worksheet of 20+ questions and answers. Includes reasoning and applied questions.

COMING SOON

Angles in parallel lines – co-interior angles examples

Example 1: co-interior angles

Calculate the size of the missing angle θ. Justify your answer.

Co interior angles example 1

  1. Highlight the angle(s) that you already know.

Co interior angles example 1 step 1

2Use co-interior angles to find a missing angle.

Co interior angles example 1 step 2

Here we can label the co-interior angle on the diagram as 60º as 120 + 60 = 180º.

3Use a basic angle fact to calculate the missing angle.

Co interior angles example 1 step 3

Here as θ is vertically opposite 60º,

θ = 60º.

Example 2: co-interior angles

Calculate the size of the missing angle θ. Justify your answer.

Co interior angles example 2

Co interior angles example 2 step 1


Here we can use either the 118º angle or the 83º angle. For this example we will use the 118º angle as this explores an alternative method not yet described.

Co interior angles example 2 step 2


As co-interior angles have a sum of 180º, 180 − 118 = 180º , the missing angle highlighted is 62º.

Co interior angles example 2 step 3


Here we have a trapezium with the sum of interior angles as 360º. Using this fact, we can calculate the value of θ:

\[\begin{aligned} \theta&=360^{\circ}-\left(118^{\circ}+62^{\circ}+83^{\circ}\right) \\\\ \theta&=97^{\circ} \end{aligned}\]

Example 3: co-interior angles with algebra

Calculate the size of the missing angle θ. Justify your answer.

Co interior angles example 3

Co interior angles example 3 step 1


We need to find the value of x first. 

Co interior angles example 3 step 2


As 11x and 4x are co-interior, we can state that

\[\begin{aligned} 11x+4x&=180^{\circ} \\ 15x&=180^{\circ} \\ x&=12^{\circ} \end{aligned}\]


This gives us the two co-interior angles of 11x = 132º. and 4x = 48º.


Co interior angles example 3 step 2.2

The angles in the triangle are 48º and 90º, since the sum of angles in a triangle is 180º.

Co interior angles example 3 step 3


180 – 48 – 90 = 180º so the third angle in the triangle is 42º.


Since \theta and 42^o are on a straight line,

\[\begin{aligned} \theta&=180-42 \\\\ \theta&=138^{\circ} \end{aligned}\]

Common misconceptions

  • Mixing up angle facts

There are a lot of angle facts and it is easy to mistake alternate angles with corresponding angles. To prevent this from occurring, think about co-interior angles being inside the C shape.

  • Using a protractor to measure an angle

Using a protractor to measure an angle. Most diagrams are not to scale and so using a protractor will not result in a correct answer unless it is a coincidence.

Practice co-interior angles questions

1. Calculate the value of \theta. Justify your answer

 

Co interior angles practice question 1

 

\theta =136^{\circ}
GCSE Quiz True

\theta =44^{\circ}
GCSE Quiz False

\theta =143^{\circ}
GCSE Quiz False

\theta =37^{\circ}
GCSE Quiz False

Co interior angles practice question 1 answer

 

\theta and 44^{\circ} are co-interior angles. Therefore,

 

\theta = 180-44=136^{\circ}

2. Calculate the value of \theta

 

Co interior angles practice question 2

 

\theta =125^{\circ}
GCSE Quiz True

\theta =55^{\circ}
GCSE Quiz False

\theta =70^{\circ}
GCSE Quiz False

\theta =62.5^{\circ}
GCSE Quiz False

Using co-interior angles, we can calculate

 

180-125=55^{\circ}
Co interior angles practice question 2 answer

 

Using co-interior angles again, we can see that

 

\theta=180-55=125^{\circ}

3. Given the information in the diagram, calculate the size of angle \theta

 

Co interior angles practice question 3

 

\theta =110^{\circ}
GCSE Quiz False

\theta =70^{\circ}
GCSE Quiz False

\theta =40^{\circ}
GCSE Quiz True

\theta =140^{\circ}
GCSE Quiz False

Using co-interior angles, we can calculate

 

180-110=70^{\circ}
Co interior angles practice question 3 answer

 

Since it is an isosceles triangle, the other angle at the bottom of the triangle is 70^{\circ} as well.

 

Then, using angles in a triangle,

 

\theta=180-(70+70)=40^{\circ}

4. Calculate the value of  \theta

 

Co interior angles practice question 4

 

\theta =90^{\circ}
GCSE Quiz False

\theta =95^{\circ}
GCSE Quiz False

\theta =85^{\circ}
GCSE Quiz True

\theta =83^{\circ}
GCSE Quiz False

(7 + \theta)^{\circ} and 88^{\circ} are co-interior angles therefore

 

Co interior angles practice question 4 answer

 

\begin{aligned} (7+ \theta) +88&=180\\\\ \theta&=180-(88+7)\\\\ \theta&=85^{\circ} \end{aligned}

5. Work out the value of   \theta

 

Co interior angles practice question 5

 

\theta =68^{\circ}
GCSE Quiz False

\theta =44^{\circ}
GCSE Quiz True

\theta =112^{\circ}
GCSE Quiz False

\theta =22^{\circ}
GCSE Quiz False

Since the triangle is an isosceles triangle, we know that the other angle at the top of the triangle is 68^{\circ}.

 

(\theta+68)^{\circ} and 68^{\circ} are co-interior angles therefore

 

Co interior angles practice question 5 answer

 

(\theta+68) + 68 = 100 \theta = 180-(68+68) \theta=44\degree

6. By calculating the value for x , work out the size of each angle labelled.

 

Co interior angles practice question 6

 

 42^{\circ}  and  38^{\circ} 
GCSE Quiz False

 30^{\circ}  and  30^{\circ} 
GCSE Quiz False

 80^{\circ}  and  100^{\circ} 
GCSE Quiz False

 78^{\circ}  and  102^{\circ} 
GCSE Quiz True

3x+12 and 2x+18 are co-interior angles, and so add up to 180\degree.

 

Therefore, we can write

 

3x+12+2x+18=180
 

5x+30=180
 

5x=150
 
x=30
so

 

3x+12=3 \times 30 + 12=102\degree
 

2x+18=2 \times 30+18=78\degree
 

Co-interior angles GCSE questions

1.

  Co interior angles exam question 1

 

(a) Find the size of angle x .

 

(b) Find the size of angle y .

 

(3 marks)

Show answer

(a)

 

180-38=142^{\circ} as co-inteior angles add to 180^{\circ}

180-142=38^{\circ} as angles on a straight line add to 180^{\circ}

            (2)

 

(b)

 

180 – {(110 + 38)}=32^{\circ}

 (1)

2. Work out the value of x .

 

Co interior angles exam question 2

 

(3 marks)

Show answer

5x – 7 + 3x + 11 = 180

  (1)

8x + 4 = 180

  (1)

x=22^{\circ}

  (1)

3. Are the lines AB and CD parallel? Give a reason for your answer.

 

Co interior angles exam question 3

 

(2 marks)

Show answer

No,

  95+87=182^{\circ}

  (1)

When two lines are parallel, the co-interior angles add up to 180^{\circ}

  (1)

Learning checklist:

You have now learned how to:

  • Apply the properties of angles at a point, angles at a point on a straight line, vertically opposite angles
  • Understand and use the relationship between parallel lines and alternate and corresponding angles

Still stuck?

Prepare your KS4 students for maths GCSEs success with Third Space Learning. Weekly online one to one GCSE maths revision lessons delivered by expert maths tutors.

Find out more about our GCSE maths revision programme.