GCSE Tutoring Programme

Our chosen students improved 1.19 of a grade on average - 0.45 more than those who didn't have the tutoring.

In order to access this I need to be confident with:

2D shapes Types of angles Angles on a straight line Angles in a triangleThis topic is relevant for:

Here we will learn about **angles in polygons** including how to calculate angles in polygons using a variety of methods and an overview of interior and exterior angles

There are also angles in polygons worksheets based on Edexcel, AQA and OCR exam questions, along with further guidance on where to go next if you’re still stuck.

**Angles in polygons** relate to the interior and exterior angles of regular and irregular polygons.

**Interior angles **are the angles within a polygon made by two sides.

We can calculate the sum of the interior angles of a polygon by subtracting 2 from the number of sides and then multiplying by

**Step-by-step guide:** Interior angles of a polygon

**Exterior angles** are the angles between a polygon and the extended line from the next side.

The sum of the exterior angles of a polygon is always equal to

**Step-by-step guide: **Exterior angles of a polygon

A **polygon **is a two dimensional shape with at least three sides, where the sides are all straight lines.

‘Poly’ comes from the greek for ‘many’ whilst ‘gon’ means ‘angles’.

You will be familiar with many types of polygons such as triangle, rectangle and pentagon.

**Regular polygons** have all angles are that are equal in size and all sides that are equal in length.

**Irregular polygons **have angles that are not equal in size and sides that are not equal in length.

The ‘**sum of interior angles**’ of a polygon means finding the total of all the angles in a polygon. This is **the key step **in helping us solve many problems involving angles in polygons.

We know that the sum of all the angles in a triangle is equal to

**Sum of the angles in a triangle**:

We know that the three angles in any triangle add up to

Mathematically we would say:

*“The sum of interior angles for a triangle is 180 degrees”*.

**Step-by-step guide:** Angles in a triangle

**Sum of the angles in a quadrilateral**:

A quadrilateral is a four sided shape. We can ‘split’ a quadrilateral into two triangles by drawing a line from one corner to an opposite one.

If the sum of interior angles one triangle is

So the sum of the interior angles of quadrilateral is

**Step-by-step guide:** Angles in a quadrilateral

Using our knowledge of triangles we can find the sum of the interior angles of any polygon by splitting it into triangles.

**Step-by-step guide:** Angles in a pentagon

**Step-by-step guide:** Angles in a hexagon

Interior and exterior angles add up to 180^{0}.

Interior and exterior angles lie on a **straight line.** This means that when added together they will equal

This is useful when working on more complex questions.

The number of triangles created inside a shape is always 2 lower than the number of sides.

Here is a list of all the polygons we will work with in this lesson:

Name | Number of Sides | Triangles Created |

Triangle | 3 | 1 |

Rectangle | 4 | 2 |

Parallelogram | 4 | 2 |

Trapezium | 4 | 2 |

Hexagon | 5 | 3 |

Hexagon | 6 | 4 |

Heptagon | 7 | 5 |

Octagon | 8 | 6 |

Nonagon | 9 | 7 |

Decagon | 10 | 8 |

Notice how the number of triangles created is **always 2 lower than the number of sides**.

The sum of the interior angles of a polygon depends on how many sides it has, not what it looks like.

Despite these two decagons (

In order to find the sum of interior angles for any polygon you should:

**Identify how many sides the polygon has.****Identify if the polygon is regular or irregular.****If possible work out how many triangles could be created within the polygon by drawing lines from one vertex to all the other vertices.****Multiply the number of triangles by**180 to calculate the sum of the interior angles.**State your findings e.g. sides, regular/irregular, the sum of interior angles.**

Get your free angles in polygons worksheet of 20+ questions and answers. Includes reasoning and applied questions.

DOWNLOAD FREEGet your free angles in polygons worksheet of 20+ questions and answers. Includes reasoning and applied questions.

DOWNLOAD FREEFind the sum of interior angles for this polygon.

**Identify how many sides the polygon has.**

This polygon has four sides.

2 **Identify if the polygon is regular or irregular.**

This polygon is irregular as all the sides are not of equal length.

3 **If possible work out how many triangles could be created within the polygon by drawing lines from one corner to all the other vertices.**

The polygon can be broken up into **two **triangles.

4 **Multiply the number of triangles by 180 to get the sum of the interior angles.**

\[180^{\circ} × 2 = 360^{\circ}\]

5 **State your findings e.g. sides, regular/irregular, the sum of interior angles.**

The polygon is a irregular quadrilateral (specifically called a parallelogram as both opposite sides are parallel) with a sum of interior angles of

**Identify how many sides the polygon has.**

This polygon has

**Identify if the polygon is regular or irregular.**

This polygon is regular as all the sides are of equal length and the angles are of equal size.

**If possible work out how many triangles could be created within the polygon by drawing lines from one corner to all the other vertices.**

The polygon can be broken up into **eight **triangles.

**Multiply the number of triangles by 180 ^{o} to get the sum of the interior angles.**

\[180^{\circ} × 8 = 1440^{\circ} \]

**State your findings e.g. sides, regular/irregular, the sum of interior angles.**

The polygon is a regular

**Identify how many sides the polygon has.**

This polygon has five sides.

**Identify if the polygon is regular or irregular.**

This polygon is irregular as all the sides are not of equal length and the angles are not of equal size

The polygon can be broken up into **three **triangles.

**Multiply the number of triangles by 180 ^{o} to get the sum of the interior angles.**

\[180^{\circ} × 3 = 540^{\circ} \]

**State your findings e.g. sides, regular/irregular, the sum of interior angles.**

The polygon is a irregular five sided polygon (pentagon) with a sum of interior angles of

**Identify how many sides the polygon has.**

This polygon has

**Identify if the polygon is regular or irregular.**

This polygon is irregular as all the angles are not of equal size.

The polygon can be broken up into **eight **triangles.

*Notice how we had to do this differently to previous examples. But we have not created any new angles because our lines do not cross.*

**Multiply the number of triangles by 180 ^{o} to get the sum of the interior angles.**

\[180^{\circ} × 8 = 1440^{\circ}\]

**State your findings e.g. sides, regular/irregular, the sum of interior angles.**

The polygon is a irregular

*STOP AND THINK: **Notice how this is the same sum of interior angles for example 2. This is because the polygon has the same number of sides*.

**What is the size of one of the exterior angles of an equilateral triangle?**

The sum of interior angle in a triangle is

An equilateral triangle has

Therefore each interior angle is

Therefore one exterior angle is equal to

Therefore one exterior angle is ** 120º**.

**What is the sum of the interior angles for a 30 sided polygon?**

To work out the number of triangles a polygon can be split into we subtract

A

Therefore the sum of its interior angles can be found by

The sum of interior angles of a

*This will be looked at in more detail in the lesson on interior angles in a polygon*.

**What is the sum of interior angles of this polygon?**

This polygon has

To work out the number of triangles a polygon can be split into we subtract

A

Therefore the sum of its interior angles can be found by

The sum of interior angles in a hexagon is

**Miscounting the number of sides**

**Misidentifying if a polygon is regular or irregular**

**Incorrectly assuming all the angles are the same size**

**Crossing lines when drawing the triangles, this creates false interior angles**

1. Is a square a regular or irregular polygon?

Regular

Irregular

All the side lengths are the same, and all angles are right angles, hence a square is a regular polygon.

2. Is a semi circle a polygon?

Yes

No

A semicircle has a side which is not straight, so it is not a polygon.

3. What is the sum of interior angles for a triangle?

90^{\circ}

180^{\circ}

360^{\circ}

270^{\circ}

The angles in a triangle add up to 180^{\circ}.

4. What is the sum of interior angles for a regular hexagon?

720^{\circ}

540^{\circ}

360^{\circ}

1080^{\circ}

We know the angles in a triangle add up to 180^{\circ} . A regular hexagon can be divided into 4 triangles, and four lots of 180 is 720 .

5. What is the sum of interior angles for an irregular hexagon?

720^{\circ}

540^{\circ}

360^{\circ}

1080^{\circ}

We know the angles in a triangle add up to 180^{\circ} . An irregular hexagon can be divided into 4 triangles, and four lots of 180 is 720 .

6. What is the sum of interior angles for a regular 12 sided polygon?

2700^{\circ}

2160^{\circ}

1800^{\circ}

1080^{\circ}

We know the angles in a triangle add up to 180^{\circ} . A 12 sided polygon can be divided into 10 triangles, and ten lots of 180 is 1800 .

7. What is the sum of interior angles for a regular 25 sided polygon?

4500^{\circ}

4140^{\circ}

9000^{\circ}

3600^{\circ}

We know the angles in a triangle add up to 180^{\circ} . A 25 sided polygon can be divided into 23 triangles, and 23 lots of 180 is 4140 .

1. Each exterior angle of a regular polygon is 15^{\circ} .

Work out the number of sides the polygon has.

**(2 marks)**

Show answer

360 \div 15

**(1)**

24

**(1)**

2. Each of the interior angles of a regular polygon is 140^{\circ} . Show that this polygon has 9 sides

**(2 marks)**

Show answer

Exterior angle = 40 seen or implied

**(1)**

**(1)**

3. In a regular polygon each exterior angle is 18^{\circ} . Find the sum of interior angles for this polygon

**(3 marks)**

Show answer

360 \div 18 \quad \text { or implied by "20" }

**(1)**

**(1)**

**(1)**

You have now learned how to:

- Use conventional terms for geometry e.g. regular or irregular
- Derive and apply the properties and definitions of: special types of quadrilaterals
- Knowing names and properties of polygons
- Calculate the sum of interior angles for a regular polygon
- Calculate the sum of interior angles for a irregular polygon

Prepare your KS4 students for maths GCSEs success with Third Space Learning. Weekly online one to one GCSE maths revision lessons delivered by expert maths tutors.

Find out more about our GCSE maths tuition programme.