One to one maths interventions built for GCSE success

Weekly online one to one GCSE maths revision lessons available in the spring term

Find out more

Expand and Simplify

Here we will learn how to expand and simplify algebraic expressions. First we expand the brackets, then we collect the like terms to simplify the expression.

At the end you’ll find expanding brackets worksheets based on Edexcel, AQA and OCR exam questions, along with further guidance on where to go next if you’re still stuck.

What does ‘expand and simplify’ mean?

In order to expand and simplify an expression, we need to multiply out the brackets and then simplify the resulting expression by collecting the like terms.

Expanding brackets (or multiplying out) is the process by which we remove brackets.

It is the reverse process of factorisation. To expand brackets we multiply everything outside of the bracket, by everything inside of the bracket.

Once we have expanded the brackets we can simplify the expression by collecting the like terms.

E.g.

If we expand and simplify

\[2(x + 5) + 3(x − 2)\]

We will get

\[2(x + 5) + 3(x − 2) = 2x + 10 + 3x − 6\]

This lesson is part of our series of lessons to support revision on algebraic expressions. You may find it helpful to start with the main algebraic expressions lesson for a summary of what to expect and then also work through the following:

Expand and simplify worksheets

Expand and simplify worksheets

Expand and simplify worksheets

Download free expand and simplify worksheets with 20+ reasoning and applied questions, answers and mark scheme.

DOWNLOAD FREE
x
Expand and simplify worksheets

Expand and simplify worksheets

Expand and simplify worksheets

Download free expand and simplify worksheets with 20+ reasoning and applied questions, answers and mark scheme.

DOWNLOAD FREE

How to expand and simplify brackets

In order to expand and simplify brackets:

  1. Expand each bracket in the expression.
  2. Collect the like terms.

There are three ways to expand and simplify brackets as covered below:

  • single brackets
  • two or more brackets
  • surds

  1. Expand and simplify with single brackets.

Expand the brackets to give the following expression:

E.g. 2(x + 5) + 3(x − 1)
= 2x + 10 + 3x − 3)
= 5x + 7

Remember: expressions with two terms like 5x + 7 are known as binomials.

2Expand and simplify with two or more brackets.

Expand the brackets to give the following expression:

E.g. (x + 5)(x − 1) 
= x2 + 5x − x − 5
= x2 + 4x − 5

Remember: expressions with three terms like x2 + 4x − 5 are known as trinomials.

An expression that contains more than two terms and includes variables and coefficients is called a polynomial.

3 Expand and simplify with surds.

E.g. (3 + √5)(2 + √5) 
= 6 + 3√5 + 2√5 + √5√5
= 11 + 5√5

1) Expand and simplify with single brackets

To expand a single bracket we multiply the term outside of the bracket by everything inside of the bracket. We can simplify the expression by collecting the like terms.

Expand and simplify examples (with single brackets)

Example 1: constants outside of the brackets

Expand and simplify:

2(x + 5) + 3(x − 2)

  1. Expand each bracket in the expression

Multiply the first bracket:

x+ 5
22x+ 10

Multiply the second bracket – remember we are multiplying both x and − 2 by + 3:

x− 2
+ 3+ 3x− 6

Remember to include the – sign in front of the number.

2(x + 5) + 3(x − 2) = 2x + 10 + 3x − 6

2Collect the like terms

Highlight the two x terms (2x and + 3x) and the two constants (+ 10 and − 6).

Remember to highlight the sign in front of the number too!

2x + 10 + 3x − 6

2x + 3x = 5x 
10 − 6 = + 4 

= 5x + 4

Example 2: constants and variables outside of the brackets

Expand and simplify:

2x(x + 6) - 3(x - 2)

Multiply the first bracket:

x+ 6
2x2x2+ 12x

Multiply the second bracket – remember we are multiplying both x and − 2 by − 3:

x − 2
− 3− 3x+ 6

= + so − 3 ✕ − 2 gives a positive answer. We need to write + 6.

2x(x + 6) − 3(x − 2)) = 2x2 + 12x − 3x + 6

The only ‘like terms’ we have are the two x terms (+12x and -3x). Highlight them both.

12x2 + 12x - 3x + 6
12x - 3x = 9x                    
= 12x2 + 9x + 6

Example 3: variables in both terms in the brackets

Expand and simplify:

3(2x − 6y) − 5(x − 2y)

Multiply the first bracket:

2x− 6y
36x− 18y

+ = so 3 ✕ − 6y gives a negative answer. We need to write − 18y.

Multiply the second bracket, remember we are multiplying both x and − 2y by − 5:

x− 2y
− 5− 5x+ 10y

= + so − 5 ✕ − 2y gives a positive answer. We need to write + 10y.

3(2x − 6y) − 5(x − 2y) =
6x − 18y − 5x + 10y

Highlight the two x terms (6x and − 5x) and the two y terms (− 18y and + 10y).

Remember to highlight the sign in front of the number too!

6x − 18y − 5x + 10y
6x − 5x = 1x = x
− 18y + 10y = − 8y    
= x − 8y

Practice expand and simplify questions (with single brackets)

1. Expand and simplify: 3(x + 7) – 2(x + 3)

Show answer

= x + 15

2. Expand and simplify: 8(y − 5) − 5(y − 2)

Show answer

= 3y − 30

3. Expand and simplify: 5x(3x − 2) − 4x(2x + 3)

Show answer

= 7x2 − 22x

4. Expand and simplify: 5(6x − 2y) − 2(8x − 5y)

Show answer

= 14x

2) Expand and simplify with two or more brackets

To expand two or more brackets we multiply every term in the first bracket by every term in each of the other brackets.

Expand and simplify examples (with two or more brackets)

Example 1: variables have a coefficient of 1

Expand and simplify:

(x + 5)(x − 1)

  1. Expand the brackets in the expression.

x− 1
xx2− x
+ 5+ 5x− 5

x ✕ x = x2
x ✕ − 1 = − x

+ = so the answer is negative.

x ✕ 5 = 5x 
5 ✕ − 1 = − 5

+ = so the answer is negative.

(x + 5)(x − 1) = x2 − x + 5x − 5

2Collect the like terms.

The only like terms we have are the two x terms (− x and + 5x). Highlight them both.

x2 − x + 5x − 5
x2 + 4x − 5

Example 2: variables have a coefficient of greater than 1

Expand and simplify:

(2x − 4)(x + 5)

x+ 5
2x2x2+ 10x
− 4− 4x− 20
2x ✕ x = 2x2
2x ✕ 5 = 10x 
x ✕ − 4 = − 4x

+ = so the answer is negative.

5 ✕ − 4 = − 20 

+ = so the answer is negative.

(2x − 4)(x + 5)=
2x2 + 10x − 4x − 20

The only like terms we have are the two x terms (+ 10x and − 4x). Highlight them both.

2x2 + 10x − 4x − 20
2x2 + 6x − 20

Example 3: with triple brackets

Expand and simplify:

(x + 3)2(x − 1)

(x + 3)2 = (x + 3)(x + 3)
x+ 3
xx2+ 3x
+ 3+ 3x+ 9
x ✕ x = x2
x ✕ 3 = 3x 
x ✕ 3 = 3x
3 ✕ 3 = 9 
x2 + 3x + 3x + 9
x2 + 6x + 9

x2+ 6x+ 9
xx3+ 6x2+ 9x
− 1− x2− 6x− 9
x ✕ x2 = x3
x ✕ 6x = 6x2
x ✕ 9 = 9x
− 1 ✕ x2 = − x2
− 1 ✕ 6x = − 6x
− 1 ✕ 9 = − 9

x3 + 6x2 − x2 + 9x − 6x − 9

 x3 + 5x2 + 3x − 9

Practice expand and simplify questions (with two or more brackets)

1. Expand and simplify: (x + 3)(x − 7)

Show answer

= x2 − 4x − 21

2. Expand and simplify: (2x − 4)(x − 9)

Show answer

= 2x2 − 22x + 36

3. Expand and simplify: (x − 3)2(2x + 1)

Show answer

=2x3 − 11x2 + 12x + 9

4. Expand and simplify: (2x − 1)3

Show answer

=8x3 − 12x2 + 6x − 1

3) (H) Expand and simplify with surds

To expand the brackets we need to multiply each term by every other term.

Expand and simplify examples (with surds)

Example 1: with constants and surds

Expand and simplify:

(3 + √5)(2 + √5) 

  1. Expand the brackets in the expression.

2+ √5
36+ 3√5
+ √5+ 2√5+ 5

3 ✕ 2 = 6
3 ✕ √5 = 3√5 
2 ✕ √5 = 2√5
√5 ✕ √5 = √5√5 
= 6 + 3√5 + 2√5 + 5

2Collect the like terms.

Highlight the two constant terms (6 and 25) and highlight the two surd terms (3√5 and 2√5).

6 + 3√5 + 2√5 + 25
= 11 + 5√5

Example 2: with all terms as surds

Expand and simplify:

(√2 + √5)2 − (3 + √5)2 

Expand and simplify:

(√2 + √5)2 = (√2 + √5)(√2 + √5)
√2+ √5
√22+ √10
+ √5+ √10+ 5
2 + √10 + √10 + 5
= 7 + 2√10

Expand and simplify:

(3 + √5)2 = (3 + √5)(3 + √5)
3+ √5
39+ 3√5
+ √5+ 3√5+ 5
9 + 3√5 + 3√5 + 5
= 14 + 6√5

Now we will subtract the two answers.

Remember because we are taking away all of (14 + 6√5) we need to use brackets.

= 7 + 2√10 − (14 + 6√5)
= 7 + 2√10 − 14 − 6√5
= − 7 + 2√10 − 6√5

Practice expand and simplify questions (with surds)

1. Expand and simplify: (2 + √6)(3 + √6)

Show answer

= 12 + 5√6

2. Expand and simplify: (3 + √5)(2 – √5)

Show answer

= 1 – √5

3. Expand and simplify: (√3 + √7)2 – (3 + √7)

Show answer

=7 + 2√21 – √7

4. Expand and simplify: (√2 – √8)2 – (√2 + √8)2

Show answer

= – 16

Common misconceptions

  • Multiplying all terms in the bracket

We must multiply the value outside the brackets by every term inside the brackets (parentheses).

E.g.

2(6x2  − 3x) = 12x2 − 3x 

Here we have not multiplied the value outside of the brackets by the second term.

The correct answer is:

2(6x2 − 3x) = 12x2 − 6x 

  • Multiplying with negative numbers

For two numbers to multiply to give a + their signs must be the same.

+ ✕ + = +
− ✕ − = +

e.g. 2 ✕ 3 = 6
e.g. − 2 ✕ − 3 = 6

4 ✕ 5 = 20
− 4 ✕ − 5 = 20

For two numbers to multiply to give a their signs must be the different.

+ ✕ − = −
− ✕ + = −

e.g. 2 ✕ − 3 = − 6
e.g. − 2 ✕ 3 = − 6

4 ✕ − 5 = − 20
− 4 ✕ 5 = − 20

E.g.

− 4(3y − 5) = − 4y − 20

Here we have not used − ✕ − = +

− 4 ✕ − 5 = + 20

So the correct answer is − 4(3y − 5) = − 4y + 20.

  • Squaring a term

When we square something, we multiply it by itself.

E.g.

32 = 3 ✕ 3
x2 = x ✕ x
(5y)2 = 5y ✕ 5y

When we square a bracket, we multiply it by the entire bracket.

(x + 3)2 = (x + 3)(x + 3)
= x2 + 6x + 9
NOT x2 + 9

  • Collecting like terms

When we collect like terms we must include the sign in front of the number.

E.g.

3x + 8 + 6x − 2
NOT 3x + 8 + 6x2

Expand and simplify GCSE questions

1. Expand and simplify: – 2(y + 3)

Show answer

– 2y – 6

(1 mark)

2. Expand and simplify: 3(x – 2)+ 2(x + 5)

Show answer

5x + 4

(2 marks)

3. Expand and simplify: (2y – 3)(y + 2)

Show answer

2y2 + y – 6

(2 marks)

Learning checklist

  • Multiply a single term over a bracket
  • Expand products of 2 or more binomials
  • Simplify and manipulate algebraic expressions by collecting like terms

Still stuck?

Prepare your KS4 students for maths GCSEs success with Third Space Learning. Weekly online one to one GCSE maths revision lessons delivered by expert maths tutors.

Find out more about our GCSE maths revision programme.