High Impact Tutoring Built By Math Experts

Personalized standards-aligned one-on-one math tutoring for schools and districts

In order to access this I need to be confident with:

Whole numbers Multiplying and dividing fractions Multiplying fractionsHere we will learn about fractions of numbers and how to solve problems involving fractions of numbers.

Students first learn about fractions of numbers in fourth grade in their work with number and operations – fractions. They will extend this understanding as they progress through 5th and 6th grade.

**Fractions of numbers **are calculated when we multiply a fractional number by the whole number. The word “of” means to multiply.

For example, let’s look at how to use a visual model and the algorithm to calculate fractions of numbers.

How does this relate to 4th grade math?

Understand a fraction \cfrac{a}{b} as a multiple of \cfrac{1}{b}. For example, use a visual fraction model to represent \cfrac{5}{4} as the product 5 \times (\cfrac{1}{4}), recording the conclusion by the equation \cfrac{5}{4} = 5 \times (\cfrac{1}{4}).**Grade 4 – Number and Operations – Fractions (4.NF.B.4.a)**

**Grade 4 – Number and Operations – Fractions (4.NF.B.4.b)**

Understand a multiple of \cfrac{a}{b} as a multiple of \cfrac{1}{b}, and use this understanding to multiply a fraction by a whole number. For example, use a visual fraction model to express 3 \times (\cfrac{2}{5}) as 6 \times (\cfrac{1}{5}), recognizing this product as \cfrac{6}{5}. (In general, n \times (\cfrac{a}{b}) = \cfrac{(n \, \times \, a)}{b}.)

In order to find a fraction of a number using a model.

**Draw one fraction horizontally and the other vertically.****Connect the fractions all the way across with**2**different colors.****Count up the shaded, overlapping parts.****If possible, simplify or convert to a mixed number.**

In order to find a fraction of a number using the algorithm

**Convert to a multiplication statement.****Convert the whole number to an improper fraction.****Multiply the numerators together and the denominators together.****If possible, simplify or convert to a whole number or mixed number.**

Use this worksheet to check your grade 4 students’ understanding of fractions of numbers. 15 questions with answers to identify areas of strength and support!

DOWNLOAD FREEUse this worksheet to check your grade 4 students’ understanding of fractions of numbers. 15 questions with answers to identify areas of strength and support!

DOWNLOAD FREE\cfrac{1}{4} \, of 7

**Draw one fraction horizontally and the other vertically.**

7 or \, \cfrac{7}{1} \, is drawn vertically and \, \cfrac{1}{4} \, is drawn horizontally which is 7 wholes divided into 4 equal pieces.

2**Connect the fractions all the way across with **2** different colors.**

3**Count up the shaded, overlapping parts.**

7 groups of \, \cfrac{1}{4} \, represents the overlap shaded pieces which is

\cfrac{1}{4}+\cfrac{1}{4}+\cfrac{1}{4}+\cfrac{1}{4}+\cfrac{1}{4}+\cfrac{1}{4}+\cfrac{1}{4}=\cfrac{7}{4}4**If possible, simplify or convert to a mixed number.**

There is no common factor between 7 and 4 which means \, \cfrac{7}{4} \, is in its simplest form.

\cfrac{7}{4} \, as a mixed number is 1\cfrac{3}{4}

\cfrac{1}{4} \, of 7=1\cfrac{3}{4}

\cfrac{1}{2} \, of 16

**Convert to a multiplication statement.**

\cfrac{1}{2} \times 16

**Convert the whole number to an improper fraction.**

16 as an improper fraction is \, \cfrac{16}{1} .

**Multiply the numerators together and the denominators together.**

\cfrac{1}{2} \times \cfrac{16}{1}=\cfrac{1 \, \times \, 16}{2 \, \times \, 1}

**If possible, simplify or convert to a whole number or mixed number.**

\cfrac{16}{2} \, has a common factor of 2 .

\cfrac{16\div 2}{2\div 2}=\cfrac{8}{1} = 8

\cfrac{3}{10} \, of 5

**Draw one fraction horizontally and the other vertically.**

5 or \cfrac{5}{1} drawn vertically and \cfrac{1}{10} drawn horizontally which is 5 wholes divided into 10 equal pieces.

**Connect the fractions all the way across with ** \bf{2} ** different colors.**

**Count up the shaded, overlapping parts.**

5 groups of \cfrac{3}{10} \, represent the overlap shaded pieces which is

\cfrac{3}{10}+\cfrac{3}{10}+\cfrac{3}{10}+\cfrac{3}{10}+\cfrac{3}{10}=\cfrac{15}{10}

**If possible, simplify or convert to a whole number or mixed number.**

The common factor between \cfrac{15}{10} \, is 5.

\cfrac{15 \, \div \, 5}{10 \, \div \, 5}=\cfrac{3}{2}=1\cfrac{1}{2}

Find \, \cfrac{2}{7} \, of 28 .

**Convert to a multiplication statement.**

\cfrac{2}{7} \times 28

**Convert the whole number to an improper fraction.**

\cfrac{2}{7}\times \cfrac{28}{1}

**Multiply the numerators together and the denominators together.**

\cfrac{2}{7}\times \cfrac{28}{1} = \cfrac{2 \, \times \, 28}{7 \, \times \, 1}=\cfrac{56}{7}

**If possible, simplify or convert to a whole number or mixed number.**

The common factor between \, \cfrac{56}{7} \, is 7.

\cfrac{56 \, \div \, 7}{7 \, \div \, 7}=\cfrac{8}{1}=8

\cfrac{2}{7} \, of 28 is 8 .

What is \, \cfrac{3}{4} \, of 20?

**Convert to a multiplication statement.**

\cfrac{3}{4}\times 20

**Convert the whole number to an improper fraction.**

\cfrac{3}{4}\times \cfrac{20}{1}

**Multiply the numerators together and the denominators together.**

\cfrac{3}{4}\times \cfrac{20}{1}= \cfrac{3\times 20}{4\times1}= \cfrac{60}{4}

**If possible, simplify or convert to a whole number or mixed number.**

The common factor between 4 and 60 is 4.

\cfrac{60 \, \div \, 4}{4 \, \div \, 4}=\cfrac{15}{1}=15

\cfrac{3}{4} \, of 20 is 15 .

Jenny went hiking and only walked two thirds of the 24 mile hiking trail. How many miles did she hike?

**Convert to a multiplication statement.**

\cfrac{2}{3} \, of 24 is \, \cfrac{2}{3} \times 24

**Convert the whole number to an improper fraction.**

\cfrac{2}{3} \times\cfrac{24}{1}

**Multiply the numerators together and the denominators together.**

\cfrac{2}{3} \times\cfrac{24}{1} = \cfrac{2 \, \times \, 24}{3 \, \times \, 1} =\cfrac{48}{3}

**If possible, simplify or convert to a whole number or mixed number.**

The common factor between 48 and 3 is 3.

\cfrac{48 \, \div \, 3}{3 \, \div \, 3}=\cfrac{16}{1}=16

Two thirds of 24 is 16, so she hiked 16 miles.

Dylan only filled \, \cfrac{2}{5} \, of his 20 -ounce water bottle. How much water is there in the bottle?

**Convert to a multiplication statement.**

\cfrac{2}{5}\times 20

**Convert the whole number to an improper fraction.**

\cfrac{2}{5}\times \cfrac{20}{1}

**Multiply the numerators together and the denominators together.**

\cfrac{2}{5}\times \cfrac{20}{1}=\cfrac{2 \, \times \, 20}{5 \, \times \, 1}=\cfrac{40}{5}

**If possible, simplify or convert to a whole number or mixed number.**

The common factor between 40 and 5 is 5.

\cfrac{40 \, \div \, 5}{5 \, \div \, 5}= \cfrac{8}{1}= 8

\cfrac{2}{5} \, of 20 is 8, so there are 8 ounces of water in the bottle.

- Use visual models so students can develop conceptual understanding.

- Explore patterns so that students can make sense of the simple steps involved in multiplying a fraction by a whole number.

- Use a number line to provide a visual representation of fractions of numbers and help students understand the concept as points on the number line.

- Although practice worksheets have their place, reinforcing skills with visual models and hands-on activities is more effective for students to formulate deep understanding.

**Confusing the meaning of the word “of”**

Thinking “of” means division instead of multiplication.

For example, thinking \, \cfrac{1}{2} \, of 10 means \, \cfrac{1}{2} \div 10

**Cross multiplying**

If students have been introduced to cross multiplying, they may get confused and use it when multiplying two fractions.

For example,

**Confusing multiplying fractions and dividing fractions**

For example,

**Drawing a fraction model incorrectly**

For example, when drawing a model to represent \, \cfrac{1}{2} \, of 4, not dividing the model into the correct number of equal parts.

1. Find \, \cfrac{1}{3} \, of 9

27

6

3

4.5

To use a model to find the answer:

9 or \, \cfrac{9}{1} \, is vertical and \, \cfrac{1}{3} \, is horizontal which is 9 divided into 3 equal pieces.

The overlap shaded region represents 9 groups of \, \cfrac{1}{3} \, or

\cfrac{1}{3}+\cfrac{1}{3}+\cfrac{1}{3}+\cfrac{1}{3}+\cfrac{1}{3}+\cfrac{1}{3}+\cfrac{1}{3}+\cfrac{1}{3}+\cfrac{1}{3}=\cfrac{9}{3}

\cfrac{9}{3} = 3

\cfrac{1}{3} \, of 9 is 3

2. Find \, \cfrac{1}{2} \, of 18

9

9.5

36

6

\cfrac{1}{2} \, of 18 is \, \cfrac{1}{2} \times 18

18 as an improper fraction is \, \cfrac{18}{1}

So, \cfrac{1}{2}\times\cfrac{18}{1}=\cfrac{18}{2}

The common factor of 18 and 2 is 2

\cfrac{18 \, \div \, 2}{2 \, \div \, 2}=\cfrac{9}{1}=9

\cfrac{1}{2} \, of 18 is 9

3. Find \, \cfrac{3}{4} \, of 8

12

6

\cfrac{32}{3}

\cfrac{3}{24}

To use a model to find the answer:

\cfrac{8}{1} \, is horizontal and \, \cfrac{3}{4} \, is vertical.

The overlap shaded region represents 8 groups of \, \cfrac{3}{4} \, or

\cfrac{3}{4}+\cfrac{3}{4}+\cfrac{3}{4}+\cfrac{3}{4}+\cfrac{3}{4}+\cfrac{3}{4}+\cfrac{3}{4}+\cfrac{3}{4}=\cfrac{24}{4}

\cfrac{24}{4}=6

4. Find \, \cfrac{5}{8} \, of 56

36

35

40

28

\cfrac{5}{8} \, of 56 is \, \cfrac{5}{8}\times 56

56 as an improper fraction is \, \cfrac{56}{1}

So, \, \cfrac{5}{8}\times\cfrac{56}{1}=\cfrac{5 \, \times \, 56}{8 \, \times \, 1}= \cfrac{280}{8}

The common factor of 280 and 8 is 8.

\cfrac{280 \, \div \, 8}{8 \, \div \, 8}=\cfrac{35}{1}=35

\cfrac{5}{8} \, of 56 is 35

5. Lucas ran \, \cfrac{1}{5} \, of a 15 mile running path. How far did he run?

7.5 miles

4 miles

10 miles

3 miles

\cfrac{1}{5} \, of 15 is \, \cfrac{1}{5}\times 15

15 as an improper fraction is \, \cfrac{15}{1}

So, \, \cfrac{1}{5}\times\cfrac{15}{1}=\cfrac{1 \, \times \, 15}{5 \, \times \, 1}= \cfrac{15}{5}

The common factor between 15 and 5 is 5.

\cfrac{15 \, \div \, 5}{5 \, \div \, 5}=\cfrac{3}{1}=3

\cfrac{1}{5} \, of 15 is 3

6. Maddie reads four-fifths of the 65 pages of her book. How many pages did she read?

52 pages

13 pages

48 pages

54 pages

\cfrac{4}{5} \, of 65 is \, \cfrac{4}{5}\times 65

65 as an improper fraction is \, \cfrac{65}{1}

\cfrac{4}{5}\times \cfrac{65}{1}=\cfrac{4 \, \times \, 65}{5 \, \times \, 1}=\cfrac{260}{5}

The common factor between 260 and 5 is 5.

\cfrac{260 \, \div \, 5}{5 \, \div \, 5}=\cfrac{52}{1} =52

\cfrac{4}{5} \, of 65 is 52 pages

Yes, the word “of” means to multiply. So finding the fraction of a number is the same as when you multiply fractions.

Yes, in order to make a whole number a fraction, place it over 1. So the denominator of the fraction is always 1.

Mixed fractions and mixed numbers mean the same thing.

You can get a common denominator to multiply fractions, but it isn’t necessary for multiplication.

There are proper fractions where the numerator (top number) is smaller than the denominator (bottom number). There are unit fractions where the numerator (top number) is 1 and the denominator (bottom number) is a whole number. There are improper fractions where the numerator (top number) is greater than the denominator (bottom number). There are mixed numbers or mixed fractions that are made up of a whole number and a proper fraction.

They are similar because they can have a whole part and a fractional part.

At Third Space Learning, we specialize in helping teachers and school leaders to provide personalized math support for more of their students through high-quality, online one-on-one math tutoring delivered by subject experts.

Each week, our tutors support thousands of students who are at risk of not meeting their grade-level expectations, and help accelerate their progress and boost their confidence.

Find out how we can help your students achieve success with our math tutoring programs.

x
####
[FREE] Common Core Practice Tests (3rd to 8th Grade)

Download free

Prepare for math tests in your state with these 3rd Grade to 8th Grade practice assessments for Common Core and state equivalents.

Get your 6 multiple choice practice tests with detailed answers to support test prep, created by US math teachers for US math teachers!