

Identity Math Worksheet

Algebra

Grades 9 to 12

Skill Questions

Name:
Date:

1 Verify the identity: $2sinx = \frac{2}{cscs}$

Use the identity $a^2-b^2=(a+b)(a-b)$ to factor the expression x^2-4

3 Use the identity $(a+b)^2=a^2+2ab+b^2$ to expand $(3x+y)^2$

4 Use the identity $(a-b)^2=a^2-2ab+b^2$ to expand $(x^2-y^2)^2$

5 Verify the identity: sinxsecx = tanx

6 Use the identity $(a+b)^3=a^3+3a^2b+3ab^2+b^3$ to expand $(2x+y)^3$

7 Use the identity $(a+b)^3=a^3+3a^2b+3ab^2+b^3$ to expand $(3x+4)^3$

8 Verify the identity: $tanx + secx = \frac{1 + sinx}{cosx}$

9 Use the identity $(a-b)^3=a^3-3a^2b+3ab^2-b^3$ to expand $(3x-1)^3$

Use the identity $(a+b)^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4$ to expand $(x+2y)^4$

Applied Questions

11 A square garden has an area represented by the expression $x^2+18x+81$ square units. What expression can be used to represent the length of the side of the square?

Using the difference of cubes identity, $(a^3-b^3)=(a-b)(a^2+ab+b^2)$ Factor the expression, $(x^3y^3-216z^3)$

Notice the pattern of the numbers in Pascal's triangle. What numbers should be in the missing row?

Answer

14	Laura was doing her math homework and when she got to the problem,
	$(2x+3)^2$, she wrote the answer as $4x^2+9$. Is her answer correct?

Answer

A cube has dimensions represented by (x+3). Represent the volume of the cube in the expanded form of a binomial.

Answer

Answers

Question number	Question	Answers	Standard
1	Verify the identity: $2sinx=rac{2}{cscs}$	$sinx=rac{1}{cscx}$ So, substitute $sinx$ for $rac{1}{cscx}$ $2sinx=2(sinx)$ $2sinx=2sinx$	HSF-TF.C.8
2	Use the identity $a^2-b^2=(a+b)(a-b)$ factor the expression x^2-4	Using the identity $a^2-b^2=(a+b)(a-b)$,we can factor x^2-4 as $(x+2)(x-2)$.	HSA.APR. C.4
3	Use the identity $(a+b)^2=a^2+2ab+b^2$ to expand $(3x+y)^2$	$a=3x \ b=y \ (3x)^2+2(3x)(y)+(y)^2 \ 9x^2+6xy+y^2$	HSA.APR. C.4
4	Use the identity $(a-b)^2=a^2-2ab+b^2$ to expand $(x^2-y^2)^2$	$egin{aligned} a &= x^2 \ b &= y^2 \ (x^2)^2 - 2(x^2)(y^2) + (y^2)^2 \ x^4 - 2x^2y^2 + y^4 \end{aligned}$	HSA.APR. C.4
5	Verify the identity: $sinxsecx = tanx$	$secx = rac{1}{cosx}$ and $rac{sinx}{cosx} = tanx$ Substitute $rac{1}{cosx}$ for sec x . $sinx(rac{1}{cosx}) = tanx$ $rac{sinx}{cosx} = tanx$ $tanx = tanx$	HSF-TF.C.8

Identity Math Worksheet | Grades 9 to 12 | Answers

Question number	Question	Answers	Standard
6	Use the identity $(a+b)^3=a^3+3a^2b+3ab^2+b^3$ expand $(2x+y)^3$	$egin{aligned} a &= 2x \ b &= y \ (2x)^3 + 3(2x)^2(y) + 3(2x) \ ((y)^2 + (y)^3 \ 8x^3 + 12x^2y + 6xy^2 + y^3 \end{aligned}$	HSA.APR. C.5
7	Use the identity $(a+b)^3=a^3+3a^2b+3ab^2+b^3$ expand $(3x+4)^3$	$egin{aligned} a &= 3x \ b &= 4 \ (2x)^3 + 3(3x)^2(4) + 3(2x) \ (4)^2 + (4)^3 \ 8x^3 + 108x^2 + 96x + 64 \end{aligned}$	HSA.APR. C.5
8	Verify the identity: $tanx + secx = \frac{1 + sinx}{cosx}$	$tanx = rac{sinx}{cosx}$ and $secx = rac{1}{cosx}$ substitute those identities into the left side of the equation. $rac{sinx}{cosx} + (rac{1}{cosx}) = (rac{1+sinx}{cosx})$ Because the expressions have a common denominator, add them. $rac{sinx+1}{1+sinx} = rac{1+sinx}{cosx}$	HSF-TF.C.8
9	Use the identity $(a-b)^3=a^3-3a^2b+3ab^2-b^3\ (3x-1)^3$	$a=3x \ b=1 \ (3x)^3-3(3x)^2(1)+3(3x) \ (1)^2-(1)^3 \ 27x^3-27x+9x-1$	HSA.APR. C.5

Identity Math Worksheet | Grades 9 to 12 | Answers

Question number	Question	Answers	Standard
10	Use the identity $(a+b)^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4$ to expand $(x+2y)^4$	$egin{aligned} a &= x \ b &= 2y \ (x)^4 + 4(x)^3(2y) + 6(x)^2 \ (2y)^2 + 4(x)(2y)^3 + (2y)^4 \ x^4 + 8x^3y + 24x^2y^2 + \ 32xy^3 + 256y^4 \end{aligned}$	HSA.APR. C.5
11	A square garden has an area represented by the expression $x^2+18x+81$ square units. What expression can be used to represent the length of the side of the square?	The side length of the square is $x+9$ because $(x+9)^2$ expanded is $x^2+18x+81$	HSA.APR. C.4
12	Using the difference of cubes identity, $(a^3-b^3)=(a-b)(a^2+ab+b^2)$. Factor the expression, $(x^3y^3-216z^3)$	The expression factors to be: $(x^3y^3-216z^3)=(xy-6z) \ (x^2y^2+6xyz+y^2)$	HSA.APR. C.4
13	Notice the pattern of the numbers in Pascal's triangle. What numbers should be in the missing row? 1 1 1 1 1 1 1 1 1 1 1 1	The last row of numbers are: 1, 5, 10, 10, 5, 1	HSA.APR. C.5
14	Laura was doing her math homework and when she got to the problem, $(2x+3)^2$, she wrote the answer as $4x^2+9$. Is her answer correct?	Laura's answer is not correct because she did not multiply or expand the binomial correctly. Using the identity, $(a+b)^2=a^2+2ab+b^2$ $a=2x$ $b=3$	HSA.APR. C.4
		$(2x)^2 + 2(2x)(3) + (3)^2 \ 4x^2 + 12x + 9 \ ext{So,} \ (2x+3)^2 = 4x^2 + 12x + 9$	

Identity Math Worksheet | Grades 9 to 12 | Answers

Question number	Question	Answers	Standard
15	A cube has dimensions represented by $(x+3)$. Represent the volume of the cube in the expanded form of a binomial.	$Volume = (x+3)(x+3)$ $(x+3)$ $Volume = (x+3)^3$ Using the identity: $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$ $a = x$ $b = 3$ $Volume = x^3 + (3)x^2(3) + 3x(3)^2 + (3)^3$ $Volume = x^3 + 9x^2 + 27x + 27$	HSA.APR. C.5

Do you have a group of students who need a boost in math?

Each student could receive a personalized lesson every week from our specialist one-on-one math tutors.

Differentiated instruction for each student

Aligned to your state's standard

Scaffolded learning to close gaps

Speak to us

thirdspacelearning.com/us/

+1 929-298-4593

Mello@thirdspacelearning.com

