

Skill

Group A - Column vectors

Write these vectors as column vectors:

Group B - Magnitude of a vector

Work out the magnitude of these vectors:

(Give your answer to 3 s.f. where necessary).

$$\begin{array}{c} \mathbf{1)} & \left(\begin{array}{c} 3 \\ 2 \end{array}\right) \end{array}$$

$$\begin{array}{cc} \mathbf{2} \\ & \begin{pmatrix} 2 \\ 3 \end{pmatrix} \end{array}$$

3)
$$\begin{pmatrix} 4 \\ 1 \end{pmatrix}$$

4)
$$\begin{pmatrix} 3 \\ -2 \end{pmatrix}$$

$$\begin{pmatrix}
2 \\
-2
\end{pmatrix}$$

$$\begin{pmatrix} 1 \\ -3 \end{pmatrix}$$

$$\begin{pmatrix}
-4 \\
2
\end{pmatrix}$$

8)
$$\begin{pmatrix} -3 \\ 1 \end{pmatrix}$$

9)
$$\begin{pmatrix} -4 \\ 3 \end{pmatrix}$$

$$\begin{array}{c} \textbf{10)} & \left(\begin{array}{c} -4 \\ -1 \end{array} \right) \end{array}$$

$$\begin{array}{c} \mathbf{11)} & \left(\begin{array}{c} -3 \\ -3 \end{array} \right) \end{array}$$

$$\begin{array}{c} \mathbf{12)} \left(\begin{array}{c} -1 \\ -4 \end{array} \right)$$

Group C - Vector addition

Work out:

$$\begin{pmatrix} 4 \\ 5 \end{pmatrix} + \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} 4 \\ 5 \end{pmatrix} + \begin{pmatrix} 1 \\ -3 \end{pmatrix}$$

$$\begin{pmatrix} 4 \\ 5 \end{pmatrix} + \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$
 2) $\begin{pmatrix} 4 \\ 5 \end{pmatrix} + \begin{pmatrix} 1 \\ -3 \end{pmatrix}$ 3) $\begin{pmatrix} 4 \\ 5 \end{pmatrix} + \begin{pmatrix} -1 \\ 3 \end{pmatrix}$

$$\begin{pmatrix} 5 \\ -3 \end{pmatrix} + \begin{pmatrix} 2 \\ -4 \end{pmatrix}$$

$$\begin{pmatrix} 5 \\ -3 \end{pmatrix} + \begin{pmatrix} 2 \\ -4 \end{pmatrix}$$
 5) $\begin{pmatrix} 5 \\ -3 \end{pmatrix} + \begin{pmatrix} -2 \\ -4 \end{pmatrix}$ 6) $\begin{pmatrix} 5 \\ -3 \end{pmatrix} + \begin{pmatrix} -2 \\ 4 \end{pmatrix}$

$$\begin{pmatrix} 5 \\ -3 \end{pmatrix} + \begin{pmatrix} -2 \\ 4 \end{pmatrix}$$

$$\begin{pmatrix} 4 \\ -1 \end{pmatrix} + \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$

$$\begin{pmatrix} -4 \\ -1 \end{pmatrix} + \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$

$$\begin{pmatrix} 4 \\ -1 \end{pmatrix} + \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$
 8) $\begin{pmatrix} -4 \\ -1 \end{pmatrix} + \begin{pmatrix} 2 \\ 5 \end{pmatrix}$ 9) $\begin{pmatrix} -4 \\ -1 \end{pmatrix} + \begin{pmatrix} 2 \\ -5 \end{pmatrix}$

$$\begin{pmatrix} -2 \\ 3 \end{pmatrix} + \begin{pmatrix} 4 \\ 1 \end{pmatrix}$$

(11)
$$\begin{pmatrix} -2 \\ 3 \end{pmatrix} + \begin{pmatrix} -4 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} -2 \\ 3 \end{pmatrix} + \begin{pmatrix} 4 \\ 1 \end{pmatrix}$$
 11) $\begin{pmatrix} -2 \\ 3 \end{pmatrix} + \begin{pmatrix} -4 \\ 1 \end{pmatrix}$ 12) $\begin{pmatrix} -2 \\ -3 \end{pmatrix} + \begin{pmatrix} -4 \\ 1 \end{pmatrix}$

Group D - Vector subtraction

Work out:

1)
$$\begin{pmatrix} 4 \\ 5 \end{pmatrix} - \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} 4 \\ 5 \end{pmatrix} - \begin{pmatrix} 1 \\ -3 \end{pmatrix}$$

$$\begin{pmatrix} 4 \\ 5 \end{pmatrix} - \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$
 2) $\begin{pmatrix} 4 \\ 5 \end{pmatrix} - \begin{pmatrix} 1 \\ -3 \end{pmatrix}$ 3) $\begin{pmatrix} 4 \\ 5 \end{pmatrix} - \begin{pmatrix} -1 \\ 3 \end{pmatrix}$

$$\begin{pmatrix} 5 \\ -3 \end{pmatrix} - \begin{pmatrix} 2 \\ -4 \end{pmatrix}$$

$$\begin{pmatrix} 5 \\ -3 \end{pmatrix} - \begin{pmatrix} 2 \\ -4 \end{pmatrix}$$
 5) $\begin{pmatrix} 5 \\ -3 \end{pmatrix} - \begin{pmatrix} -2 \\ -4 \end{pmatrix}$ 6) $\begin{pmatrix} 5 \\ -3 \end{pmatrix} - \begin{pmatrix} -2 \\ 4 \end{pmatrix}$

$$\begin{pmatrix} 5 \\ -3 \end{pmatrix} - \begin{pmatrix} -2 \\ 4 \end{pmatrix}$$

7)
$$\begin{pmatrix} 4 \\ -1 \end{pmatrix} - \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$

$$\begin{pmatrix} -4 \\ -1 \end{pmatrix} - \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$

$$\begin{pmatrix} 4 \\ -1 \end{pmatrix} - \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$
 8) $\begin{pmatrix} -4 \\ -1 \end{pmatrix} - \begin{pmatrix} 2 \\ 5 \end{pmatrix}$ 9) $\begin{pmatrix} -4 \\ -1 \end{pmatrix} - \begin{pmatrix} 2 \\ -5 \end{pmatrix}$

$$\begin{array}{cc} \textbf{10)} & \left(\begin{array}{c} -2 \\ 3 \end{array} \right) - \left(\begin{array}{c} 4 \\ 1 \end{array} \right) \end{array}$$

$$\begin{pmatrix} -2 \\ 3 \end{pmatrix} - \begin{pmatrix} 4 \\ 1 \end{pmatrix}$$
 11) $\begin{pmatrix} -2 \\ 3 \end{pmatrix} - \begin{pmatrix} -4 \\ 1 \end{pmatrix}$ 12) $\begin{pmatrix} -2 \\ -3 \end{pmatrix} - \begin{pmatrix} -4 \\ 1 \end{pmatrix}$

12)
$$\begin{pmatrix} -2 \\ -3 \end{pmatrix} - \begin{pmatrix} -4 \\ 1 \end{pmatrix}$$

Group E - Vector multiplication

Work out:

$$2 \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$3 \left(\begin{array}{c} 4 \\ 2 \end{array}\right)$$

3)
$$4\begin{pmatrix} 1\\3 \end{pmatrix}$$

$$\begin{array}{cc} \textbf{4)} & 2 \left(\begin{array}{c} 3 \\ -1 \end{array} \right) \end{array}$$

$$3 \left(\begin{array}{c} 4 \\ -5 \end{array} \right)$$

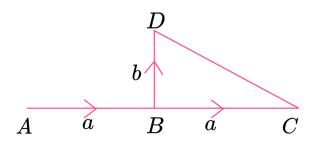
$$\begin{array}{cc} \mathbf{6)} & 4 \left(\begin{array}{c} 2 \\ -3 \end{array} \right) \end{array}$$

$$\begin{array}{cc} \textbf{7)} & 2 \left(\begin{array}{c} -1 \\ 4 \end{array} \right) \end{array}$$

$$3 \begin{pmatrix} -2 \\ 5 \end{pmatrix}$$

9)
$$4\begin{pmatrix} -4\\2 \end{pmatrix}$$

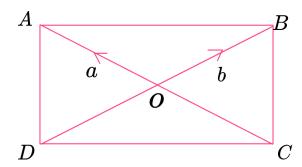
$$\begin{array}{c} \textbf{10)} \\ 2 \left(\begin{array}{c} -1 \\ -4 \end{array} \right) \end{array}$$


11)
$$3\begin{pmatrix} -2 \\ -4 \end{pmatrix}$$

$$4 \left(\begin{array}{c} -1 \\ -5 \end{array} \right)$$

Applied

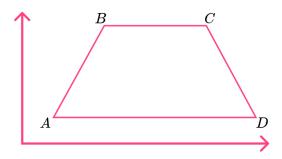
1)



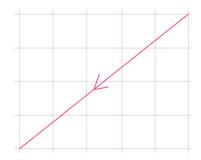
- (a) Find, in terms of a, the vector \overrightarrow{CA}
- **(b)** Find, in terms of a and b the vector \overrightarrow{DC}
- 2) Here are two vectors:

$$\mathbf{c} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$$
 and $\mathbf{d} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$

- (a) Work out 3c + 2d
- (b) Work out 4d 2c
- 3) Here is a rectangle. The diagonals meet at 0.


$$\overrightarrow{OA} = \boldsymbol{a}, \overrightarrow{OB} = \boldsymbol{b}$$

- (a) Find, in terms of b, the vector \overrightarrow{DB}
- **(b)** Find, in terms of a and b, the vector \overrightarrow{AB}



Given that
$$\overrightarrow{AB}=\left(\begin{array}{c} 2 \\ 5 \end{array} \right)$$
 and $\overrightarrow{CB}=\left(\begin{array}{c} -6 \\ 0 \end{array} \right)$, write \overrightarrow{AC} as a column vector.

Vectors - Exam Questions

Here is a vector: 1)

What is this vector as a column vector?

A

D

$$\begin{pmatrix} 5 \\ 4 \end{pmatrix}$$

$$\begin{pmatrix} 5 \\ -4 \end{pmatrix}$$

$$\begin{pmatrix} -5 \\ -4 \end{pmatrix}$$

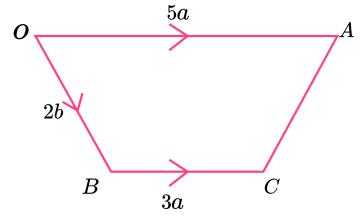
$$\left(\begin{array}{c}5\\4\end{array}\right) \qquad \left(\begin{array}{c}5\\-4\end{array}\right) \qquad \left(\begin{array}{c}-5\\4\end{array}\right) \qquad \left(\begin{array}{c}-5\\4\end{array}\right)$$

(1 mark)

2) Here are two column vectors:

$$\mathbf{a} = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$

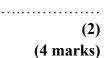
On the grid, draw the and label the vector $2\mathbf{a} - \mathbf{b}$



(3 marks)

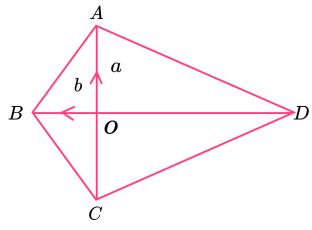
Vectors - Exam Questions

3) OABC is a trapezium.


(a) Find, in terms of b the vector \overrightarrow{BO}

(b) Find, in terms of \boldsymbol{a} and \boldsymbol{b} the vector \overrightarrow{OC}

(c) Find, in terms of a and b the vector \overrightarrow{CA}



Vectors - Exam Questions

ABCD is a kite.

The diagonals of the kite cross at O.

The length OD is 4 times the length of OB.

(a) Find, in terms of a the vector \overrightarrow{AO}

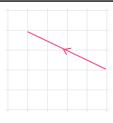
(1)

(b) Find, in terms of \boldsymbol{a} and \boldsymbol{b} the vector \overrightarrow{BA}

(1)

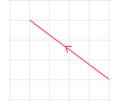
(c) Find, in terms of \boldsymbol{a} and \boldsymbol{b} the vector \overrightarrow{DC}

(2) (4 marks)



	Question	Answer
	Skill Questions	
Group A	Write these vectors as column vectors: 1)	1) $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$
	2)	2) $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$
	3)	3) (4)
	4)	4) $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$
	5)	$\begin{array}{ccc} \mathbf{5)} & \left(\begin{array}{c} 2 \\ -2 \end{array} \right) \end{array}$
	6)	$\begin{array}{c} \mathbf{6)} & \left(\begin{array}{c} 1 \\ -3 \end{array} \right) \end{array}$

Group A contd


7)

8)

9)

10)

$$\begin{pmatrix} -4 \\ 2 \end{pmatrix}$$

8)

$$\begin{pmatrix} -3 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} -4 \\ 3 \end{pmatrix}$$

LO)
$$\begin{pmatrix} -4 \\ -1 \end{pmatrix}$$

11)
$$\begin{pmatrix} -3 \\ -3 \end{pmatrix}$$

$$\begin{array}{c} \mathbf{12)} & \begin{pmatrix} -1 \\ -4 \end{pmatrix}$$

Group B Work out the magnitude of these vectors: (Give your answer to 3sf where necessary).

1)
$$\begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

2)
$$\begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

3)
$$\begin{pmatrix} 4 \\ 1 \end{pmatrix}$$

4)
$$\begin{pmatrix} 3 \\ -2 \end{pmatrix}$$

$$\begin{pmatrix}
2 \\
-2
\end{pmatrix}$$

$$\begin{pmatrix} 1 \\ -3 \end{pmatrix}$$

7)
$$\begin{pmatrix} -4 \\ 2 \end{pmatrix}$$

8)
$$\begin{pmatrix} -3 \\ 1 \end{pmatrix}$$

9)
$$\begin{pmatrix} -4 \\ 3 \end{pmatrix}$$

$$\begin{array}{c}
\mathbf{10)} \\
\begin{pmatrix}
-4 \\
-1
\end{pmatrix}$$

11)
$$\begin{pmatrix} -3 \\ -3 \end{pmatrix}$$

12)
$$\begin{pmatrix} -1 \\ -4 \end{pmatrix}$$

Group C | Work out:

1)
$$\begin{pmatrix} 4 \\ 5 \end{pmatrix} + \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

2)
$$\begin{pmatrix} 4 \\ 5 \end{pmatrix} + \begin{pmatrix} 1 \\ -3 \end{pmatrix}$$

3)
$$\begin{pmatrix} 4 \\ 5 \end{pmatrix} + \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} 5 \\ -3 \end{pmatrix} + \begin{pmatrix} 2 \\ -4 \end{pmatrix}$$

$$\begin{pmatrix} 5 \\ -3 \end{pmatrix} + \begin{pmatrix} -2 \\ -4 \end{pmatrix}$$

$$\begin{pmatrix} 5 \\ -3 \end{pmatrix} + \begin{pmatrix} -2 \\ 4 \end{pmatrix}$$

7)
$$\begin{pmatrix} 4 \\ -1 \end{pmatrix} + \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$

8)
$$\begin{pmatrix} -4 \\ -1 \end{pmatrix} + \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{9} \\ -1 \end{pmatrix} + \begin{pmatrix} 2 \\ -5 \end{pmatrix}$$

$$\begin{pmatrix} -2 \\ 3 \end{pmatrix} + \begin{pmatrix} 4 \\ 1 \end{pmatrix}$$

11)
$$\begin{pmatrix} -2 \\ 3 \end{pmatrix} + \begin{pmatrix} -4 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} -2 \\ -3 \end{pmatrix} + \begin{pmatrix} -4 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 5 \\ 8 \end{pmatrix}$$

2)
$$\begin{pmatrix} 5 \\ 2 \end{pmatrix}$$

3)
$$\begin{pmatrix} 3 \\ 8 \end{pmatrix}$$

$$\begin{pmatrix} 7 \\ -7 \end{pmatrix}$$

$$\begin{pmatrix}
3 \\
-7
\end{pmatrix}$$

6)
$$\begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 6 \\ 4 \end{pmatrix}$$

$$\begin{pmatrix} -2 \\ 4 \end{pmatrix}$$

$$\begin{pmatrix} 9 \\ -6 \end{pmatrix}$$

$$\begin{pmatrix} 10 \\ 4 \end{pmatrix}$$

$$\begin{pmatrix} -6 \\ 4 \end{pmatrix}$$

$$\begin{pmatrix} -6 \\ -2 \end{pmatrix}$$

Group D | Work out:

1)
$$\begin{pmatrix} 4 \\ 5 \end{pmatrix} - \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} 4 \\ 5 \end{pmatrix} - \begin{pmatrix} 1 \\ -3 \end{pmatrix}$$

3)
$$\begin{pmatrix} 4 \\ 5 \end{pmatrix} - \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

4)
$$\begin{pmatrix} 5 \\ -3 \end{pmatrix} - \begin{pmatrix} 2 \\ -4 \end{pmatrix}$$

$$\begin{pmatrix} 5 \\ -3 \end{pmatrix} - \begin{pmatrix} -2 \\ -4 \end{pmatrix}$$

$$\begin{pmatrix} 5 \\ -3 \end{pmatrix} - \begin{pmatrix} -2 \\ 4 \end{pmatrix}$$

$$\begin{pmatrix} 4 \\ -1 \end{pmatrix} - \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$

8)
$$\begin{pmatrix} -4 \\ -1 \end{pmatrix} - \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$

9)
$$\begin{pmatrix} -4 \\ -1 \end{pmatrix} - \begin{pmatrix} 2 \\ -5 \end{pmatrix}$$

$$\begin{pmatrix}
\mathbf{10} \\
 & \begin{pmatrix}
-2 \\
3
\end{pmatrix} - \begin{pmatrix}
4 \\
1
\end{pmatrix}$$

11)
$$\begin{pmatrix} -2 \\ 3 \end{pmatrix} - \begin{pmatrix} -4 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} -2 \\ -3 \end{pmatrix} - \begin{pmatrix} -4 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

2)
$$\begin{pmatrix} 3 \\ 8 \end{pmatrix}$$

$$\begin{pmatrix} 5 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{4} \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

$$\begin{array}{cc} \mathbf{5)} & \left(\begin{array}{c} 7 \\ 1 \end{array}\right) \end{array}$$

$$\begin{pmatrix}
7 \\
-7
\end{pmatrix}$$

$$\begin{pmatrix}
2 \\
-6
\end{pmatrix}$$

8)
$$\begin{pmatrix} -6 \\ -6 \end{pmatrix}$$

9)
$$\begin{pmatrix} -6 \\ 4 \end{pmatrix}$$

10)
$$\begin{pmatrix} -6 \\ 2 \end{pmatrix}$$

11)
$$\begin{pmatrix} 2 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 12 \\ -4 \end{pmatrix}$$

Group E	Wor	·k out:		
Group L	1)	$2\begin{pmatrix} 1\\3\end{pmatrix}$	1)	$\begin{pmatrix} 2 \\ 6 \end{pmatrix}$
	2)	$3\begin{pmatrix} 4\\2\end{pmatrix}$	2)	$\begin{pmatrix} 12 \\ 6 \end{pmatrix}$
	3)	$4\begin{pmatrix}1\\3\end{pmatrix}$	3)	$\begin{pmatrix} 4\\12 \end{pmatrix}$
	4)	$2\begin{pmatrix} 3\\-1\end{pmatrix}$	4)	$\begin{pmatrix} 6 \\ -2 \end{pmatrix}$
	5)	$3\begin{pmatrix} 4\\ -5 \end{pmatrix}$	5)	$\left(\begin{array}{c}12\\-15\end{array}\right)$
	6)	$4\begin{pmatrix}2\\-3\end{pmatrix}$	6)	$\begin{pmatrix} 8 \\ -12 \end{pmatrix}$
	7)	$2\left(\begin{array}{c}-1\\4\end{array}\right)$	7)	$\begin{pmatrix} -2 \\ 8 \end{pmatrix}$
	8)	$3\begin{pmatrix} -2\\5\end{pmatrix}$	8)	$\left(\begin{array}{c} -6\\15\end{array}\right)$
	9)	$4\begin{pmatrix} -4\\2\end{pmatrix}$	9)	$\begin{pmatrix} -16 \\ 8 \end{pmatrix}$
	10)	$2\begin{pmatrix} -1\\ -4 \end{pmatrix}$	10)	$\begin{pmatrix} -2 \\ -8 \end{pmatrix}$
	11)	$3\begin{pmatrix} -2\\ -4\end{pmatrix}$	11)	$\begin{pmatrix} -2 \\ -8 \end{pmatrix}$ $\begin{pmatrix} -6 \\ -12 \end{pmatrix}$ $\begin{pmatrix} -4 \\ -20 \end{pmatrix}$
	12)	$4\begin{pmatrix} -1\\ -5 \end{pmatrix}$	12)	$\begin{pmatrix} -4 \\ -20 \end{pmatrix}$

	Qu	Question		nswer
	Applied Questions			
1)		A = a B a C		
	a)	Find, in terms of \emph{a} , the vector \overrightarrow{CA}	a)	-2 <i>a</i>
	b)	Find, in terms of $m{a}$ and $m{b}$ the vector \overrightarrow{DC}	b)	a-b
2)		Here are two vectors:		
		$\mathbf{c} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$ and $\mathbf{d} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$		
	a)	Work out $3c + 2d$	а)	$\begin{pmatrix} 6\\11 \end{pmatrix}$
	b)	Work out 4 <i>d</i> - 2 <i>c</i>	b)	$\begin{pmatrix} -20 \\ 14 \end{pmatrix}$
3)		Here is a rectangle. The diagonals meet at O. $ \begin{matrix} A \\ \hline $		
	a)	Find, in terms of \boldsymbol{b} , the vector \overrightarrow{DB}	a)	2 <i>b</i>
	b)	Find, in terms of \boldsymbol{a} and \boldsymbol{b} , the vector \overrightarrow{AB}	b)	b - a
4)		Given that $\overrightarrow{AB} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$ and $\overrightarrow{CB} = \begin{pmatrix} -6 \\ 0 \end{pmatrix}$,		$\binom{8}{5}$
		write \overrightarrow{AC} as a column vector.		

Vectors - Mark Scheme

	Question	Answer	
	Exam Questions		
1)	Here is a vector: What is this vector as a column vector? A B C D $\begin{pmatrix} 5 \\ 4 \end{pmatrix} \begin{pmatrix} 5 \\ -4 \end{pmatrix} \begin{pmatrix} -5 \\ -4 \end{pmatrix} \begin{pmatrix} -5 \\ 4 \end{pmatrix}$	$\begin{pmatrix} -5 \\ -4 \end{pmatrix}$	(1)
2)	Here are two column vectors: $\mathbf{a} = \begin{pmatrix} 4 \\ -1 \end{pmatrix} \text{ and } \mathbf{b} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$ On the grid, draw the and label the vector $2a - b$	$2\mathbf{a} = \begin{pmatrix} 8 \\ -2 \end{pmatrix}$ $2\mathbf{a} - \mathbf{b} = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$ $2a - b$	(1)
			(1)

Vectors - Mark Scheme

3)		OABC is a trapezium $O \longrightarrow A$ $2b$ $B \longrightarrow 3a$			
	(a)	Find, in terms of \boldsymbol{b} the vector \overrightarrow{BO}	(a)	-2 b	(1)
((b)	Find, in terms of \boldsymbol{a} and \boldsymbol{b} the vector \overrightarrow{OC}	(b)	2b + 3a	(1)
((c)	Find, in terms of \boldsymbol{a} and \boldsymbol{b} the vector \overrightarrow{CA}	(c)	-3a - 2b + 5a	(1)
				2a - 2b	(1)
4)		ABCD is a kite. The diagonals of the kite cross at O. The length OD is 4 times the length of OB.			
((a)	Find, in terms of \boldsymbol{a} the vector \overrightarrow{AO}	(a)	-a	(1)
((b)	Find, in terms of \boldsymbol{a} and \boldsymbol{b} the vector \overrightarrow{BA}	(b)	a - b	(1)
((c)	Find, in terms of \boldsymbol{a} and \boldsymbol{b} the vector \overrightarrow{DC}	(c)	$\overrightarrow{DO} = 4\mathbf{b}$ $4\mathbf{b} - \mathbf{a}$	(2)

Do you have KS4 students who need additional support in maths?

Our specialist tutors will help them develop the skills they need to succeed at GCSE in weekly one to one online revision lessons. Trusted by secondary schools across the UK.

Visit **thirdspacelearning.com** to find out more.