

Skill

1)

Group A - Vector problems including parallel and extended lines

In each question find the vector \overrightarrow{AB} . All diagrams are not to scale:

2)

4)

Group B - Vector problems including midpoints

In questions 1-8 find the vector \overrightarrow{PQ} . In questions 9-12 find the vector \overrightarrow{MQ} . Both *M* and *Q* are midpoints. All diagrams are not to scale:

9)

8)

3

Group C - Vector problems including fractions and ratios

In each question find the vector \overrightarrow{XY} . All diagrams are not to scale:

Helping schools close the maths attainment gap through targeted one to one teaching and flexible resources

Applied

1) Point *D* is located using the vector $\overrightarrow{CD} = a + 2b$. Point *E* is located using the vector $\overrightarrow{AE} = -a$.

- (a) Make a copy of the diagram, showing the location of the points D and E.
- (b) Hence or otherwise find the vector \overrightarrow{DE} .
- 2)

In the diagram below, $\overrightarrow{AB} = a$, $\overrightarrow{DA} = b$ and $\overrightarrow{DC} = 3\overrightarrow{AB}$. The line *AB* is extended so that $\overrightarrow{AE} = 2\overrightarrow{AB}$. *M* is the midpoint of *BC*. *N* is the point such that *DN*: *NC* = 2: 1.

- (a) i) Find the vector *CD*.
 ii) Find the vector *CB*.
 iii) Find the vector *NM*.
- (b) Show that *NME* is a straight line.

3)

In the diagram below, $\overrightarrow{AD} = \mathbf{x}$ and $\overrightarrow{DC} = \mathbf{y}$. *E* is the midpoint of *AC*.

- (a) Find the vector \overrightarrow{AE} .
- (b) Show that *E* is the midpoint of *BD*.
- 4) In the diagram below, $\overrightarrow{BA} = 3a$, $\overrightarrow{BC} = 3b$ and $\overrightarrow{AF} = 3\overrightarrow{AD}$. *E* is a point such that $\overrightarrow{ED} = na$.

Given that BEF is a straight line, find the value of n.

Vector problems - Exam Questions

1)

 $\overrightarrow{AB} = 2x + 4y, \quad \overrightarrow{AC} = 8y.$ D is the midpoint of AB. The line AC is extended so that $\overrightarrow{AE} = 1.5\overrightarrow{AC}$.

(a) Find the vector \overrightarrow{BC} .

.....(1)

(b) Find the vector \overrightarrow{DE} .

(2) (3 marks)

Vector problems - Exam Questions

(b) Show that $\overrightarrow{AE} = k(2a + b)$ and hence determine the value of k.

(2) (3 marks)

(1)

Vector problems - Exam Questions

3)

 $\overrightarrow{XY} = 3a, \ \overrightarrow{XZ} = 4b$ $\overrightarrow{MY} = \frac{1}{3} \ \overrightarrow{XY}$

ZN: NY = 1:3*P* is the midpoint of \overrightarrow{MN} .

(a) Find the vector \overrightarrow{MN} .

(b) Find the vector \overrightarrow{XP} .

(3)

(3) (6 marks)

	Question	Answer
	Skill Questions	
Group A	In each question find the vector \overrightarrow{AB} . All diagrams are not to scale:	
		1) $-c + 2d$
	$\begin{array}{c} 2 \mathbf{)} \qquad \begin{array}{c} C \qquad B \\ a \qquad b \qquad D \end{array}$	2) 3 <i>a</i> - 2 <i>b</i>
	$\begin{array}{c} \textbf{3)} \begin{array}{c} f \\ e \\ \end{array} \\ A \end{array}$	3) 2 <i>e</i> – <i>f</i>
	$\begin{array}{c} \textbf{4} \\ B \end{array} \begin{array}{c} 3a \\ 2b \\ B \end{array}$	4) - 6 <i>a</i> + 4 <i>b</i>
	5) $D E \xrightarrow{AC} = a \\ AB = 2AC \\ A a C B$	5) 2 <i>a</i>
	$\overrightarrow{A} \qquad \overrightarrow{a} \qquad \overrightarrow{C} \qquad \overrightarrow{AC} = a \\ CB = \frac{1}{2}AC$	6) $\frac{3}{2}a$
	7) D $\overrightarrow{CA} = p, \overrightarrow{CD} = q$ $\overrightarrow{CB} = 4CA$ \overrightarrow{C} \overrightarrow{p} \overrightarrow{A} \overrightarrow{B}	7) 3p
	8) $\begin{array}{c} C & a & A & B \\ b & \overrightarrow{AC} = a \\ \overrightarrow{CD} = b \\ D & E & CB = 3CA \end{array}$	8) - 2 <i>a</i>

Helping schools close the maths attainment gap through targeted one to one teaching and flexible resources

Group A contd	9)	$ \begin{array}{cccc} D & c & G & B \\ b & & & \\ C & & & \\ a & & & E \end{array} $ $ \begin{array}{cccc} F & \overrightarrow{CA} = a, \overrightarrow{CD} = b, \overrightarrow{DG} = c \\ DB = 2DG \end{array} $	9) $-a + b + 2c$
	10)	$ \begin{array}{cccc} F & n & B \\ \hline G & & & & \\ G & & & & \\ C & D & & & \\ \end{array} \xrightarrow{GF = m, FB = n} \\ DA = 2CD \\ \hline A \\ \end{array} $	10) 2 <i>m</i> - 3 <i>n</i>
	11)	$A \qquad D \qquad B$ $a \qquad b \qquad \overrightarrow{AC} = a, \overrightarrow{DC} = b$ $AB = 2AD$	11) 2 <i>a</i> – 2 <i>b</i>
	12)	$\begin{array}{cccc} E & 3a & A \\ \hline & & \overrightarrow{EA} = 3a, \ \overrightarrow{DE} = a + 4b, \ \overrightarrow{DC} = 5a \\ \hline & & CB = 0.5DC \\ \hline & & D & 5a & C & B \end{array}$	12) 3. 5 <i>a</i> – 4 <i>b</i>
Group B	In qu	estions 1-8 find the vector \overrightarrow{PQ} . In	
	ques	tions 9-12 find the vector \overline{MQ} .	
	diagr	rams are not to scale:	
	1)	S $P = a, \overrightarrow{PS} = b$ $P = a = Q = R$	1) $\frac{1}{2}a$
	2)	$P \qquad p \qquad R$ $q \qquad \qquad$	2) $\frac{1}{2}p - q$
	3)		3) $\frac{1}{2}c - 3d$
	4)	$a \xrightarrow{P} Q \xrightarrow{Q} B \xrightarrow{Q} B$	4) $-\frac{1}{2}a + \frac{1}{2}b$

	Qı	lestion	A	nswer
	Ар	plied Questions		
1)		Point <i>D</i> is located using the vector $\overrightarrow{CD} = a + 2b$. Point <i>E</i> is located using the vector $\overrightarrow{AE} = -a$. Diagram not to scale a A C		
	a)	Make a copy of the diagram, showing the location of the points <i>D</i> and <i>E</i> .	a)	
	b)	Hence or otherwise find the vector \overrightarrow{DE} .	b)	-3a-3b
2)	a) b)	In the diagram below, $\overrightarrow{AB} = a$, $\overrightarrow{DA} = b$ and $\overrightarrow{DC} = 3\overrightarrow{AB}$. The line <i>AB</i> is extended so that $\overrightarrow{AE} = 2\overrightarrow{AB}$. <i>M</i> is the midpoint of <i>BC</i> . <i>N</i> is the point such that <i>DN</i> : <i>NC</i> = 2: 1. A a B E Diagram not to scale b N $Ci) Find the vector \overrightarrow{CD}.ii) Find the vector \overrightarrow{CB}.iii) Find the vector \overrightarrow{NM}.Show NME is a straight line.$	a) b)	i) $\overrightarrow{CD} = -3a$ ii) $\overrightarrow{CB} = b - 2a$ iii) $\overrightarrow{NM} = 0.5b$ $\overrightarrow{ME} = 0.5b$ so $\overrightarrow{NM} = \overrightarrow{ME}$. As the vectors share the same point <i>M</i> , <i>NME</i> is a straight line.

3)		In the diagram below, $\overrightarrow{AD} = x$ and $\overrightarrow{DC} = y$. <i>E</i> is the midpoint of <i>AC</i> .		
	a)	Find the vector \overrightarrow{AE} .	a)	$\frac{1}{2}x + \frac{1}{2}y$
	b)	Show that <i>E</i> is the midpoint of <i>BD</i> .	b)	$\overrightarrow{BE} = -\mathbf{y} + \frac{1}{2}\mathbf{x} + \frac{1}{2}\mathbf{y} = \frac{1}{2}\mathbf{x} - \frac{1}{2}\mathbf{y}$ $\overrightarrow{ED} = -\frac{1}{2}\mathbf{x} - \frac{1}{2}\mathbf{y} + \mathbf{x} = \frac{1}{2}\mathbf{x} - \frac{1}{2}\mathbf{y}$ The two vectors are equal, therefore <i>E</i> is the midpoint
4)		In the diagram below, $\overrightarrow{BA} = 3a$, $\overrightarrow{BC} = 3b$ and $\overrightarrow{AF} = 3\overrightarrow{AD}$. E is a point such that $\overrightarrow{ED} = na$. $\overrightarrow{B} \qquad 3b \qquad C$ $\overrightarrow{B} \qquad 0$ $\overrightarrow{B} \qquad C$ $\overrightarrow{B} \qquad D$ $\overrightarrow{B} \qquad D$ $\overrightarrow{B} \qquad D$ $\overrightarrow{B} \qquad \overrightarrow{B} \qquad \overrightarrow{B} \qquad \overrightarrow{B} \qquad \overrightarrow{B} \qquad \overrightarrow{C} \qquad \overrightarrow{D} \qquad \overrightarrow{C} \qquad$		$\overrightarrow{BE} = 3\mathbf{b} + (3-n)\mathbf{a}$ $\overrightarrow{EF} = n\mathbf{a} + 6\mathbf{b}$ $2(3-n) = n$ $n = 2$

Vector problems - Mark Scheme

	Question	Answer	
	Exam Questions		
1)	$\overrightarrow{AB} = 2x + 4y, \overrightarrow{AC} = 8y.$ $D \text{ is the midpoint of } AB.$ The line AC is extended so that $\overrightarrow{AE} = 1.5\overrightarrow{AC}.$ B $2x + 4y$ A By C E $D_{\text{lagram not to scale}}$		
(a)	Find the vector \overrightarrow{BC} .	(a) $\overrightarrow{BC} = -2x - 4y + 8y = -2x + 4y$	(1)
(b)	Find the vector <i>DE</i> .	(b) $AE = 12y$, $DA = -x - 2y$ \overrightarrow{DE} and $2y + 12y$ and $10y$	(1)
2)	$\overrightarrow{AB} = 10a, \ \overrightarrow{BC} = 5b.$ The point <i>E</i> lies on the line <i>AC</i> such that AE: EC = 3: 2. B = 5b C Diagram not to scale	DE = -x - 2y + 12y = -x + 10y	(1)
(a)	Find the vector \overrightarrow{AC} .	(a) $\overrightarrow{AC} = 10a + 5b$	(1)
(b)	Show that $\overrightarrow{AE} = k(2a + b)$ and hence determine the value of k.	(b) $\overrightarrow{AE} = \frac{3}{5}(10a + 5b)$ = $6a + 3b = 3(2a + b)$ k = 3	(1) (1)
3)	$\overrightarrow{XY} = 3a, \ \overrightarrow{XZ} = 4b$ $\overrightarrow{MY} = \frac{1}{3} \ \overrightarrow{XY}$ $ZN: NY = 1: 3$ $P \text{ is the midpoint of } \overrightarrow{MN}.$ Y M A		
(a)	Find the vector \overrightarrow{MN} .	(a) $\overrightarrow{MY} = a$ $\overrightarrow{YN} = \frac{3}{4}(-3a+4b) = -\frac{9}{4}a+3b$ $\overrightarrow{MN} = a - \frac{9}{4}a + 3b = -\frac{5}{4}a + 3b$	 (1) (1) (1)

- 5

Vector problems - Mark Scheme

(b)	Find the vector \overrightarrow{XP} .	(b)	$\overrightarrow{XM} = 2a$	(1)
			$\overrightarrow{MP} = -\frac{5}{8}\boldsymbol{a} + \frac{3}{2}\boldsymbol{b}$	(1)
			$\overrightarrow{XP} = 2a - \frac{5}{8}a + \frac{3}{2}b = \frac{11}{8}a + \frac{3}{2}b$	(1)

Do you have KS4 students who need additional support in maths?

Our specialist tutors will help them develop the skills they need to succeed at GCSE in weekly one to one online revision lessons. Trusted by secondary schools across the UK.

Visit **thirdspacelearning.com** to find out more.