

Skill

Group A - Change the subject

Make *x* the subject for the following equations.

1)
$$\frac{x}{a} = b$$

2) $\frac{x}{a^2} = b$
3) $a = \frac{x}{b}$
4) $\frac{x}{ab} = 5$
5) $ax = b$
6) $\frac{x}{a} = \frac{b}{c}$
7) $\frac{x}{\sin(a)} = b$
8) $\frac{x}{\sin(a)} = \frac{b}{c}$
9) $\frac{x}{\sin(a)} = \frac{y}{\sin(b)}$

...

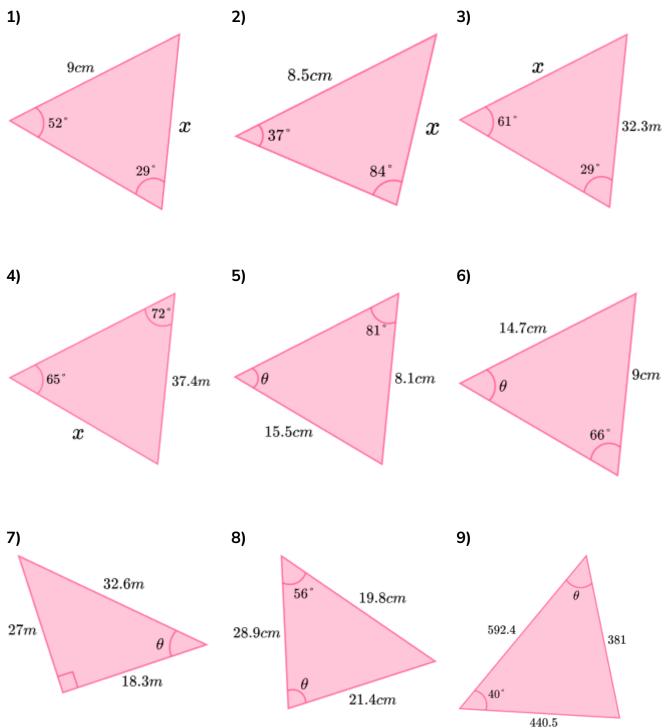
Group B - Change the subject

Make θ the subject for the following equations. Let θ represent the opposing side of a right angled triangle, A is the adjacent side, and H is the hypotenuse.

1)
$$\sin(\theta) = 0$$

2) $\cos(\theta) = A$
3) $\tan(\theta) = 0$
4) $\sin(\theta) = \frac{\theta}{H}$
5) $H\sin(\theta) = 0$
6) $\frac{H}{\theta} = \frac{1}{\sin(\theta)}$
7) $\frac{H\sin(\theta)}{\theta} = 1$
8) $y = \frac{x}{\sin(\theta)}$
9) $\frac{x}{\sin(\theta)} = \frac{y}{\sin(z)}$

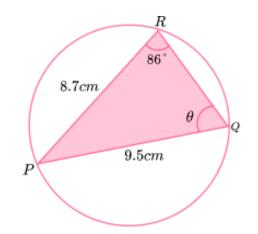
Group C - Evaluating the sine rule

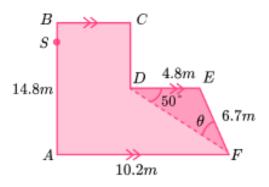

Use a calculator to find the missing angle θ , or length x, correct to 3 significant figures.

1)
$$x = \frac{743\sin(60)}{\sin(60)}$$

2) $\frac{x}{\sin(90)} = \frac{180}{\sin(50)}$
3) $\frac{x}{\sin(34)} = \frac{34.8}{\sin(114)}$
4) $\frac{282}{\sin(72)} = \frac{x}{\sin(36)}$
5) $\frac{x}{\sin(64)} = \frac{209}{\sin(68)}$
6) $\sin(\theta) = \frac{12.2 \times \sin(71)}{15.5}$
7) $\frac{\sin(\theta)}{111} = \frac{\sin(40)}{149}$
8) $\frac{\sin(\theta)}{1800} = \frac{\sin(63)}{2010}$
9) $\theta = \sin^{-1}\left(\frac{11.7\sin(45)}{11.9}\right)$

Group D - Using the sine rule

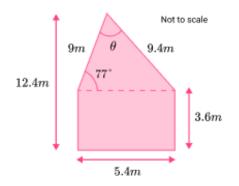

Find the missing angle θ , or length x, for each triangle. All diagrams are not drawn to scale.



Applied

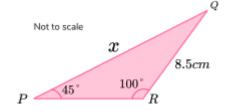
1) (a) Triangle PQR is inscribed in a circle. Calculate the size of angle θ .

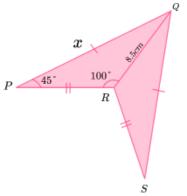
- (b) Hence or otherwise find the length of QR to 2 decimal places.
- **2)** A security camera is placed on the wall *AB* in position *S*. The region *DEF* is not covered by the security camera.



Calculate the angle between the line of sight between S and F and the corner E correct to 2 decimal places.

3

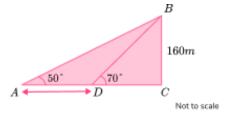

3) Below is a diagram of the cross section of a building. Using the information provided, calculate the size of angle θ correct to 3 significant figures.


Sine Rule - Exam Questions

1) (a) Work out the length of side PQ, correct to 2 decimal places.

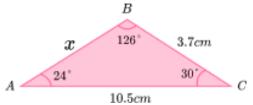
(2)

(b) Using your solution to part (a), calculate the perimeter of the arrowhead *PQSR*.



(4) (6 marks)

Sine Rule - Exam Questions


2) A firework explodes in the air at *B*, 160*m* directly above *C*. Two people watch it explode from *A* and *D*.

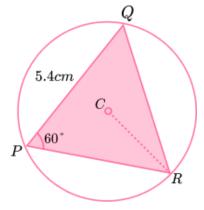
What is the distance between *A* and *D*.

(4 marks)

3) (a) To the right is a triangle *ABC*.

Circle the correct equation.

$$\frac{\sin(x)}{30} = \frac{10.5}{\sin(126)} \qquad \frac{x}{\sin(30)} = \frac{3.7}{\sin(126)}$$
$$\frac{x}{\sin(30)} = \frac{3.7}{\sin(126)} \qquad \frac{\sin(30)}{x} = \frac{\sin(126)}{\sin(24)} \qquad (1)$$


(b) Hence or otherwise, calculate the value for x.

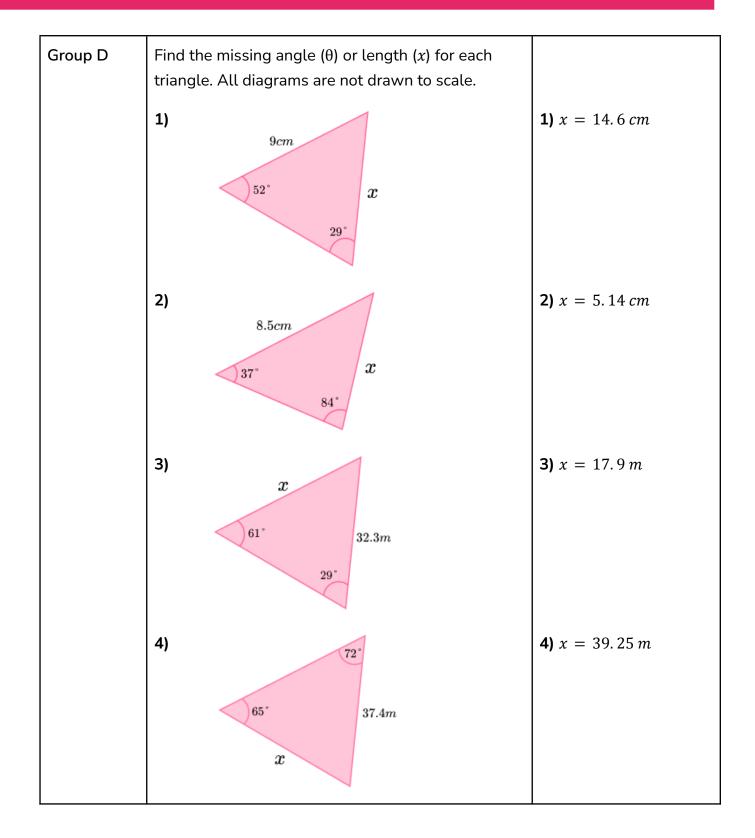
(1) (2 marks)

Sine Rule - Exam Questions

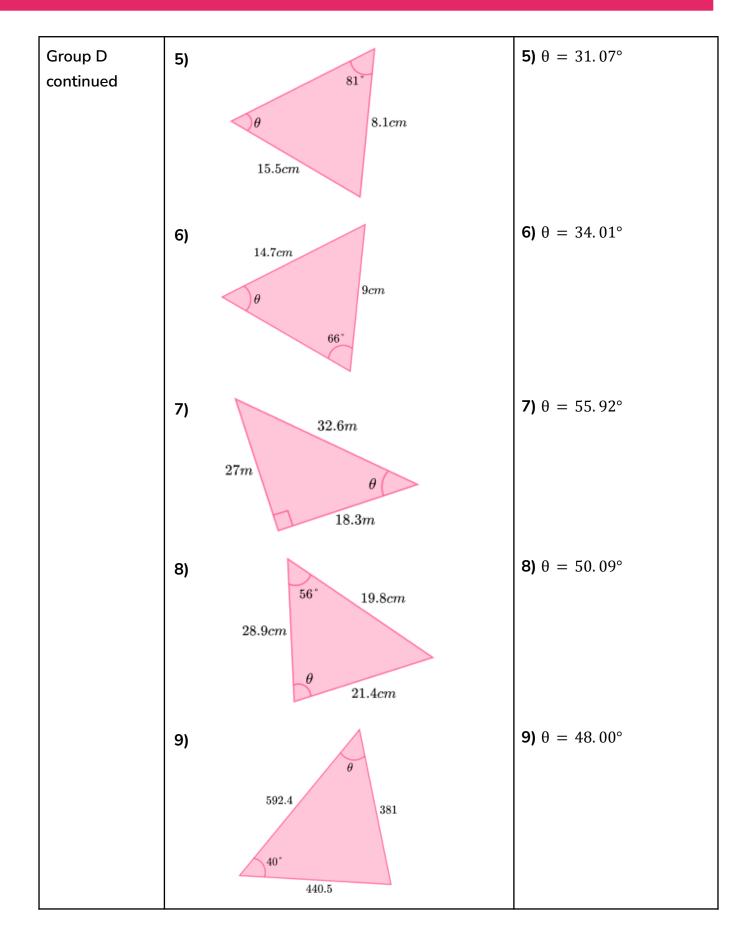
4) The equilateral triangle *PQR* is inscribed in a circle with centre C. Calculate the radius of the circle.

(4 marks)

	Question	Answer
	Skill Questions	
Group A	Make x the subject for the following equations.	
	1) $\frac{x}{a} = b$	1) x = ab
	1) $\frac{x}{a} = b$ 2) $\frac{x}{a^2} = b$	$2) x = a^2 b$
	a 3) $a = \frac{x}{b}$ 4) $\frac{x}{ab} = 5$	3) x = ab
	$4) \frac{x}{ab} = 5$	4) $x = 5ab$
	5) $ax = b$	5) $x = \frac{b}{a}$
	$\mathbf{6)} \ \frac{x}{a} = \frac{b}{c}$	$6) x = \frac{ab}{c}$
	$7) \frac{x}{\sin(a)} = b$	7) $x = b \sin(a)$
	$8) \frac{x}{\sin(a)} = \frac{b}{c}$	8) $x = \frac{b\sin(a)}{c}$
	9) $\frac{x}{\sin(a)} = \frac{y}{\sin(b)}$	9) $x = \frac{y \sin(a)}{\sin(b)}$



Group B	Make θ the subject for the following equations.	
	Let <i>0</i> represent the opposing side of a right	
	angled triangle, A is the adjacent side, and H is	
	the hypotenuse.	
	1) $\sin(\theta) = 0$	$1 \boldsymbol{\theta} = \sin^{-1}(\boldsymbol{\theta})$
	2) $\cos(\theta) = A$	2) $\theta = \cos^{-1}(A)$
	3) $\tan(\theta) = 0$	$\mathbf{3)} \ \theta = \tan^{-1}(0)$
	4) $\sin(\theta) = \frac{\theta}{H}$	4) $\theta = \sin^{-1}\left(\frac{\theta}{H}\right)$
	5) $H\sin(\theta) = 0$	5) $\theta = \sin^{-1}\left(\frac{\theta}{H}\right)$
	$\mathbf{6)} \ \frac{H}{O} = \frac{1}{\sin(\theta)}$	6) $\theta = \sin^{-1}\left(\frac{\theta}{H}\right)$
	$7) \frac{H\sin(\theta)}{\theta} = 1$	7) $\theta = \sin^{-1}\left(\frac{\theta}{H}\right)$
	8) $y = \frac{x}{\sin(\theta)}$	8) $\theta = \sin^{-1}\left(\frac{x}{y}\right)$
	9) $\frac{x}{\sin(\theta)} = \frac{y}{\sin(z)}$	9) $\theta = \sin^{-1}\left(\frac{x\sin(z)}{y}\right)$



Group C	Use a calculator to find the missing angle (θ) or length (x) correct to 3 significant figures.	
	1) $x = \frac{743\sin(60)}{\sin(60)}$	1) $x = 743$
	2) $\frac{x}{\sin(90)} = \frac{180}{\sin(50)}$	2) <i>x</i> = 235
	3) $\frac{x}{\sin(34)} = \frac{34.8}{\sin(114)}$	3) <i>x</i> = 21.3
	4) $\frac{282}{\sin(72)} = \frac{x}{\sin(36)}$	4) x = 174
	5) $\frac{x}{\sin(64)} = \frac{209}{\sin(68)}$	5) $x = 203$
	6) $\sin(\theta) = \frac{12.2 \times \sin(71)}{15.5}$	6) $\theta = 48.1^{\circ}$
	7) $\frac{\sin(\theta)}{111} = \frac{\sin(40)}{149}$	7) $\theta = 28.6^{\circ}$
	8) $\frac{\sin(\theta)}{1800} = \frac{\sin(63)}{2010}$	8) $\theta = 52.9^{\circ}$
	9) $\theta = \sin^{-1}\left(\frac{11.7\sin(45)}{11.9}\right)$	9) $\theta = 44.0^{\circ}$

	Qı	uestion	Ar	nswer
	Ар	plied Questions		
1)	a)	Triangle PQR is inscribed in a circle. Calculate the size of angle θ .	a)	66. 0°
	b)	Hence or otherwise find the length of <i>QR</i> to 2 decimal places.	b)	4. 47 <i>cm</i>
2)		A security camera is placed on the wall <i>AB</i> in position <i>S</i> . The unshaded region is not covered by the security camera. $B \\ f \\ $		θ = 33.29°
3)		Below is a diagram of the cross section of a building. Using the information provided, calculate the size of angle θ correct to 3significant figures. Not to scale $9m \qquad \theta \qquad 9.4m$ 12.4m $9m \qquad 9.4m$ 12.4m $3.6m$		θ = 34.0°

Sine Rule - Mark Scheme

	Question	Answer	
	Exam Questions		
1)	A firework explodes in the air at <i>B</i> , 160 <i>m</i> directly above <i>C</i> . Two people watch it explode from <i>A</i> and <i>D</i> . B 160 <i>m</i> $A = \frac{50^{\circ} - 70^{\circ}}{D} = C$ Not to scale What is the distance between <i>A</i> and <i>D</i> .	$\sin(70) = \frac{160}{BD}$ $BD = 170.268$ $\frac{AD}{\sin(20)} = \frac{170.268}{\sin(50)}$ $76.0 m (3sf)$	 (1) (1) (1)
2) (a) Work out the length of side PQ , correct to 2 decimal places. Not to scale $ \begin{array}{c} $	(a) $\frac{x}{\sin(100)} = \frac{8.5}{\sin(45)}$ 11.84 cm (2dp)	(1) (1)
(b) Using your solution to part (a), calculate the perimeter of the arrowhead <i>PQSR</i> .	(b) $\frac{PR}{\sin(35)} = \frac{8.5}{\sin(45)}$ PR = 6.89 Perimeter = 2 × (6.89 + 11.84) 37.5 cm (1dp)	 (1) (1) (1)

Sine Rule - Mark Scheme

3)	(a)	Below is a triangle ABC.	(a) $\frac{x}{\sin(30)} = \frac{3.7}{\sin(24)}$	(1)
		$x = \frac{126^{\circ}}{30^{\circ}} \frac{3.7cm}{C}$ A = 24 ^{\circ} = 30 ^{\circ} = C 10.5cm Circle the correct equation.		
		$\frac{\sin(x)}{30} = \frac{10.5}{\sin(126)} \frac{x}{\sin(30)} = \frac{3.7}{\sin(126)}$ $\frac{x}{\sin(30)} = \frac{3.7}{\sin(24)} \frac{\sin(30)}{x} = \frac{\sin(126)}{\sin(24)}$		
	(b)	Hence or otherwise, calculate the value for x .	(b) $x = 4.55 cm (2 dp)$	(1)
4)		The equilateral triangle PQR is inscribed in a circle with centre C. Calculate the radius of the circle.	C $120^{\circ} x$ P $5.4cm$ Angles 120°, 30°, 30° seen $PR = 5.4cm$ $\frac{x}{\sin(30)} = \frac{5.4}{\sin(120)}$ $r = 3.12 (3sf)$	(1) (1) (1) (1)

