

Skill

Group A - Interpreting the graph of $y = \sin(\theta)$

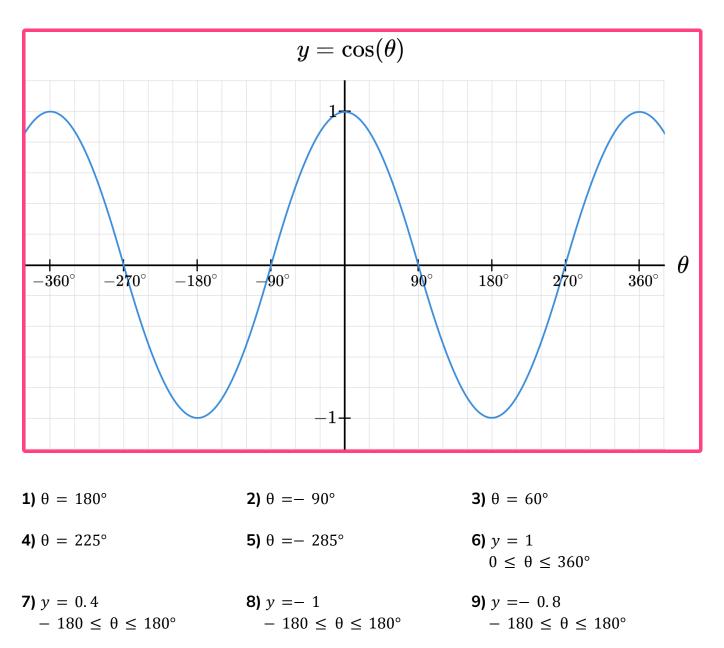
Use the graph of $y = \sin(\theta)$ for $-360 \le \theta \le 360^\circ$ to estimate the values of y and θ to a suitable degree of accuracy.

2) $\theta = 270^{\circ}$

4) $\theta = 150^{\circ}$ **5)** $\theta = -225^{\circ}$

7) y = 0.6**8)** y = 0 $-180 \le \theta \le 180^{\circ}$ $-180 \leq \theta \leq 180^{\circ}$

10) y = 0.8**11)** y = 0.5 $-360 \le \theta \le 360^{\circ}$ $-360 \le \theta \le 360^{\circ}$ **3)** $\theta = 30^{\circ}$

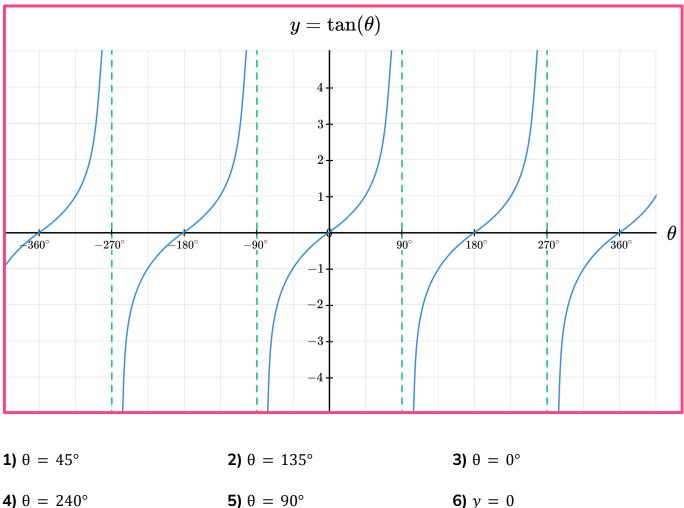

- **6)** y = -1 $0 \le \theta \le 360^{\circ}$
- **9)** y = -0.2 $-180 \le \theta \le 180^{\circ}$

12)
$$y = -0.9$$

 $-360 \le \theta \le 360^{\circ}$

Group B - Interpreting the graph of $y = cos(\theta)$

Use the graph of $y = \cos(\theta)$ for $-360 \le \theta \le 360^\circ$ to estimate the values of y and θ to a suitable degree of accuracy.



- **10)** y = 0.2- 360 $\le \theta \le 360^{\circ}$ **11)** y = 0.5- 360 $\le \theta \le 360^{\circ}$
- **12)** y = -0.3 $-360 \le \theta \le 360^{\circ}$

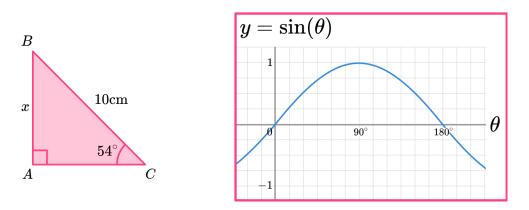
Group C - Interpreting the graph of $y = tan(\theta)$

Use the graph of $y = \tan(\theta)$ for $-360 \le \theta \le 360^\circ$ to estimate the values of y and θ to a suitable degree of accuracy.

7) y = 1.75- 180 $\leq \theta \leq 180^{\circ}$

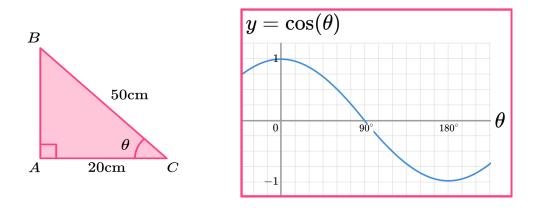
8) y = -2- 180 $\leq \theta \leq 180^{\circ}$

10) y = 0.25- $360 \le \theta \le 360^{\circ}$ **11)** y = 2.7- $360 \le \theta \le 360^{\circ}$ **6)** y = 0 $0 \le \theta \le 360^{\circ}$

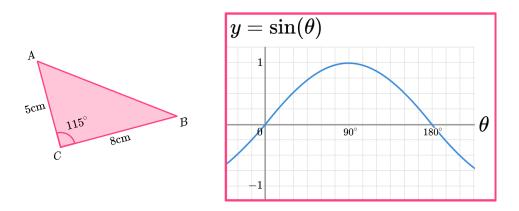

9) y = 0.75- 180 $\leq \theta \leq 180^{\circ}$

12)
$$y = 0.9$$

- 360 $\leq \theta \leq$ 360°

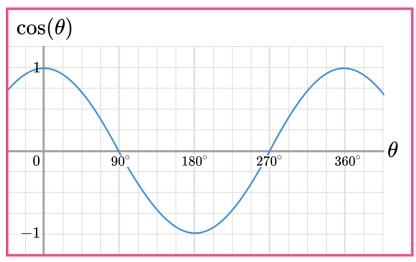


Applied


1) Using the graph of $y = \sin(\theta)$, estimate the length of the missing side of the triangle *ABC*.

2) Using the graph of $y = \cos(\theta)$, estimate the size of angle θ in the triangle *ABC*.

3) Using the graph of $y = \sin(\theta)$, estimate the area of the triangle *ABC*.



Sine, Cosine, and Tangent Graphs - Exam Questions

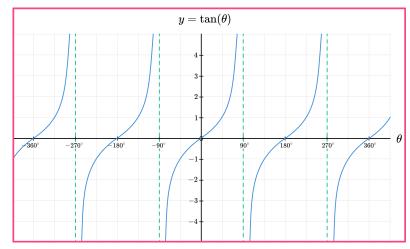
1)

Here is a sketch of the graph of $y = \cos(\theta)$ for values of θ from 0° to 360°.

(a) $\cos(\theta) = \cos(315)$ Work out the value of θ when $0 \le \theta \le 180^\circ$.

(2)

(b) $\cos(\theta) = \cos(315)$ Work out the value of x when $540 \le \theta \le 720^\circ$.

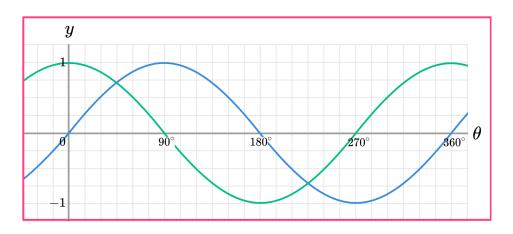

> (2) (4 marks)

Sine, Cosine, and Tangent Graphs - Exam Questions

2)

Here is a sketch of the graph of $y = \tan(\theta)$ for values of θ from -360° to 360° .

(a) Using the graph of $tan(\theta)$, write down the two solutions to the equation $tan(\theta) = 2.5$ for $-360 \le \theta \le 0$.


- (3)
- (b) Estimate the value of θ for $-90 \le \theta \le 0$ when $\tan(\theta) = -3$

(2) (5 marks)

Sine, Cosine, and Tangent Graphs - Exam Questions

3) Here are the graphs of $y = \cos(\theta)$ and $y = \sin(\theta)$ for values of θ from 0° to 360°.

(a) Write the solutions of θ when $\sin(\theta) = \cos(\theta)$ for $0 \le \theta \le 360^\circ$.

(2)

(b) Kim says:

The graphs of the sine, cosine and tangent functions all intersect at the same point for $0 \le \theta \le 90^\circ$

By using exact trigonometric values, show that Kim is not correct.

(3) (5 marks)

Sine, Cosine, and Tangent Graph - Answers

	Question	Answer
	Skill Questions	
Group A	Use the graph of $y = \sin(\theta)$ for $-360 \le \theta \le 360^\circ$ to estimate the values of y and θ to a suitable degree of accuracy.	
	1) $\theta = 90^{\circ}$ 2) $\theta = 270^{\circ}$ 3) $\theta = 30^{\circ}$ 4) $\theta = 150^{\circ}$	1) $y = 1$ 2) $y = -1$ 3) $y = 0.5$ 4) $y = 0.5$
	5) $\theta = -225^{\circ}$ 6) $y = -1$, $0 \le \theta \le 360^{\circ}$ 7) $y = 0.6$, $-180 \le \theta \le 180^{\circ}$ 8) $y = 0$, $-180 \le \theta \le 180^{\circ}$	5) $y = 0.7$ 6) $\theta = 270^{\circ}$ 7) $\theta = 37^{\circ}, 143^{\circ}$ 8) $\theta = -180^{\circ}, 0^{\circ}, 180^{\circ}$
	9) $y = -0.2, -180 \le \theta \le 180^{\circ}$ 10) $y = 0.8, -360 \le \theta \le 360^{\circ}$ 11) $y = 0.5, -360 \le \theta \le 360^{\circ}$ 12) $y = -0.9, -360 \le \theta \le 360^{\circ}$	9) $\theta = -168^{\circ}$, -12° 10) $\theta = -307^{\circ}$, -233° , 53° , 127° 11) $\theta = -330^{\circ}$, -210° , 30° , 150° 12) $\theta = -116^{\circ}$, -64° , 244° , 296°
Group B	Use the graph of $y = \cos(\theta)$ for $-360 \le \theta \le 360^\circ$ to estimate the values of y and θ to a suitable degree of accuracy.	
	1) $\theta = 180^{\circ}$ 2) $\theta = -90^{\circ}$ 3) $\theta = 60^{\circ}$ 4) $\theta = 225^{\circ}$ 5) $\theta = -285^{\circ}$ 6) $y = 1, 0^{\circ} \le \theta \le 360^{\circ}$ 7) $y = 0.4, -180 \le \theta \le 180^{\circ}$ 8) $y = -1, -180 \le \theta \le 180^{\circ}$ 9) $y = -0.8, -180 \le \theta \le 180^{\circ}$ 10) $y = 0.2, -360 \le \theta \le 360^{\circ}$ 11) $y = 0.5, -360 \le \theta \le 360^{\circ}$	1) $y = -1$ 2) $y = 0$ 3) $y = 0.5$ 4) $y = -0.7$ 5) $y = 0.26$ 6) $\theta = 0^{\circ}, 360^{\circ}$ 7) $\theta = -66^{\circ}, 66^{\circ}$ 8) $\theta = -180^{\circ}, 180^{\circ}$ 9) $\theta = -143^{\circ}, 143^{\circ}$ 10) $\theta = -282^{\circ}, -78^{\circ}, 282^{\circ}, 78^{\circ}$ 11) $\theta = -300^{\circ}, -60^{\circ}, 60^{\circ}, 300^{\circ}$
	12) $y = -0.3, -360 \le \theta \le 360^{\circ}$	12) $\theta = -253^{\circ}$, -107° , 107° , 253°

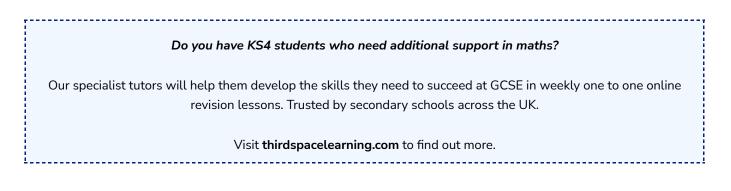
Helping schools close the maths attainment gap through targeted one to one teaching and flexible resources

Sine, Cosine, and Tangent Graph - Answers

Group C	Use the graph of $y = \tan(\theta)$ for $-360 \le \theta \le 360^\circ$ to estimate the values of y and θ to a suitable degree of accuracy.	
	1) $\theta = 45^{\circ}$	1) y =- 1
	$\mathbf{2)} \ \theta = 135^{\circ}$	2) $y = 0$
	$\mathbf{3)} \ \theta = 0^{\circ}$	3) $y = 0.5$
	$\textbf{4)} \theta = 240^{\circ}$	4) $y = 1.7$
	$\mathbf{5)} \ \theta = 90^{\circ}$	5) undefined
	6) $y = 0, 0 \le \theta \le 360^{\circ}$	6) $\theta = 0^{\circ}, 180^{\circ}, 360^{\circ}$
	7) $y = 1.75, -180 \le \theta \le 180^{\circ}$	7) $\theta = -120^{\circ}, 60^{\circ}$
	8) $y = -2, -180 \le \theta \le 180^{\circ}$	8) θ =- 63°, 117°
	9) $y = 0.75, -180 \le \theta \le 180^{\circ}$	9) θ =- 143°, 37°
	10) $y = 0.25, -360 \le \theta \le 360^{\circ}$	10) θ =- 346°, - 166°, 14°, 194°
	11) $y = 2.7, -360 \le \theta \le 360^{\circ}$	11) θ =- 290°, - 110°, 70°, 250°
	12) $y = 0.9, -360 \le \theta \le 360^{\circ}$	12) $\theta = -318^{\circ}$, -138° , 42° , 222°

Sine, Cosine, and Tangent Graph - Answers

	Question	Answer
	Applied Questions	
1)	Using the graph of $y = \sin(\theta)$, estimate the length of the missing side of the triangle <i>ABC</i> . $ \begin{array}{c} B \\ y = \sin(\theta) \\ 10 \text{ cm} \\ A \\ \end{array} $	$sin(54) \approx 0.8$ x = 10 sin(54) = 8cm
2)	Using the graph of $y = \cos(\theta)$, estimate the size of angle θ in the triangle <i>ABC</i> . $B = \left(\begin{array}{c} y = \cos(\theta) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\cos(\theta) = 0.4 \text{ so } \theta \approx 80^{\circ}$
3)	Using the graph of $y = \sin(\theta)$, estimate the area of the triangle <i>ABC</i> . A $\int_{5cm} \int_{0}^{15^{\circ}} \frac{115^{\circ}}{8cm} B$ $y = \sin(\theta)$	$A = \frac{1}{2}ab\sin(C)$ $A = \frac{1}{2} \times 8 \times 5 \times \sin(115)$ $A = 20 \times 0.9$ $A = 18cm^{2}$


Sine, Cosine, and Tangent Graph - Mark Scheme

		Question	Ar	Answer	
		Exam Questions			
1)		Here is a sketch of the graph of $y = \cos(\theta)$ for values of θ from 0 to 360°.			
		$\begin{array}{c} \cos(\theta) \\ 1 \\ 0 \\ 90^{\circ} \\ 180^{\circ} \\ 270^{\circ} \\ 360^{\circ} \\ \theta \\ \end{array}$			
	(a)	$cos(\theta) = cos(315)$ Work out the value of θ when $0 \le \theta \le 180^{\circ}$.	(a)	Vertical line drawn at $cos(315) \approx 0.7$. $\theta = 45^{\circ}$	(1) (1)
	(b)	$cos(\theta) = cos(315)$ Work out the value of θ when $540 \le \theta \le 720^{\circ}$.	(b)	$315^{\circ} + 360^{\circ}$ $\theta = 675^{\circ}$	(1) (1)
2)		Here is a sketch of the graph of $y = \tan(\theta)$ for values of θ from $- 360^{\circ}$ to 360° .			
	(a)	Using the graph of $tan(\theta)$, write down the two solutions to the equation $tan(x) = 2.5$ for $-360 \le x \le 0$.	(a)	Horizontal line drawn at $tan(\theta) = 2.5$. [- 115, - 105] (exact value=- 111°) [- 295, - 285] (exact value=- 292°)	(1) (1) (1)
	(b)	Estimate the value of θ for - 90 $\leq \theta \leq 0$ when tan(θ) =- 3.	(b)	When $\tan(\theta) = 3, \theta = 72^{\circ} [65^{\circ}, 80^{\circ}]$ $\theta = -72^{\circ} [-80^{\circ}, -65^{\circ}]$	(1) (1)

Sine, Cosine, and Tangent Graph - Mark Scheme

3)	Here are the graphs of $y = \cos(\theta)$ and $y = \sin(\theta)$.				
(a)	Write the solutions of θ when sin(θ) = cos(θ) for $0 \le \theta \le 360^{\circ}$.	(a)	$ \theta = 45^{\circ} \\ \theta = 215^{\circ} $	(1) (1)	
(b)	Kim says "the graphs of the sine, cosine and tangent functions all intersect at the same point for $0 \le \theta \le 90^{\circ}$ ". By using exact trigonometric values, show that Kim is not correct.	(b)	$sin(45) = cos(45) = \frac{\sqrt{2}}{2}$ tan(45) = 1 $tan(45) \neq \frac{\sqrt{2}}{2} \text{ so not equal to } sin(45) \text{ or}$ cos(45) which is the only point of intersection of $sin(\theta)$ and $cos(\theta)$ for $0^{\circ} \leq \theta \leq 90^{\circ} \text{ oe}$	(1)(1)(1)	

