

Iteration - Worksheet

Skill

Group A - Iteration

Calculate the value of x_3 when:

1)
$$x_1 = 5$$
 and $x_{n+1} = 3(x_n - 3)$ 2) $x_1 = 4$ and $x_{n+1} = 5(x_n - 5)$ 3) $x_1 = 3$ and $x_{n+1} = 3x_n - 3$ 4) $x_1 = 4$ and $x_{n+1} = 3(x_n + 5)$ 5) $x_1 = 2$ and $x_{n+1} = 6x_n - 3$ 6) $x_1 = 2$ and $x_{n+1} = 6x_n - 4$ 7) $x_1 = 6$ and $x_{n+1} = 2(x_n + 3)$ 8) $x_1 = 1$ and $x_{n+1} = 5x_n + 2$ 9) $x_1 = 1$ and $x_{n+1} = 3(x_n - 1)$ 10) $x_1 = 2$ and $x_{n+1} = 7x_n - 2$ 11) $x_1 = 1$ and $x_{n+1} = 3(x_n + 6)$ 12) $x_1 = 5$ and $x_{n+1} = 3x_n - 3$

Group B - Iteration (including powers and roots)

Find x_3 using the information below. Give your answers to 3 d.p.

1) $x_{n+1} = \frac{3}{x_n^2 + 1}$ and $x_0 = 1$ 2) $x_{n+1} = \frac{1}{3x_n^2 + 1}$ and $x_0 = 0$ 3) $x_{n+1} = \frac{2 - 3x_n^3}{3}$ and $x_0 = 0$ 4) $x_{n+1} = \sqrt{\frac{1 - 2x_n^3}{3}}$ and $x_0 = 0$ 5) $x_{n+1} = \frac{3 - 3x_n^3}{4}$ and $x_0 = 0$ 6) $x_{n+1} = \frac{2}{3x_n^2 + 3}$ and $x_0 = 0$ 7) $x_{n+1} = \sqrt{\frac{2 - 3x_n^3}{4}}$ and $x_0 = 0$ 8) $x_{n+1} = \frac{2}{4x_n^2 + 4}$ and $x_0 = 0$ 9) $x_{n+1} = \sqrt{\frac{2 - 2x_n^3}{5}}$ and $x_0 = 0$ 10) $x_{n+1} = \frac{1}{2x_n^2 + 3}$ and $x_0 = 0$ 11) $x_{n+1} = \sqrt{\frac{1 - x_n^3}{2}}$ and $x_0 = 0$ 12) $x_{n+1} = \sqrt{\frac{-3 - x_n^3}{-3}}$ and $x_0 = 1$

Iteration - Worksheet

Group C - Iteration (working backwards)

Calculate:

- **1)** The value of x_1 when $x_2 = 0$ and $x_{n+1} = 2x_n 4$
- **2)** The value of x_1 when $x_2 = 7$ and $x_{n+1} = 3x_n 5$
- **3)** The value of x_1 when $x_2 = 6$ and $x_{n+1} = 2x_n 6$
- **4)** The value of x_1 when $x_2 = 17$ and $x_{n+1} = 5x_n 3$
- **5)** The value of x_1 when $x_3 = 54$ and $x_{n+1} = 2(x_n + 5)$
- **6)** The value of x_1 when $x_3 = -24$ and $x_{n+1} = 4(x_n 2)$
- **7)** The value of x_1 when $x_3 = 38$ and $x_{n+1} = 3x_n 4$
- **8)** The value of x_1 when $x_3 = 63$ and $x_{n+1} = 3(x_n + 3)$
- 9) The value of x_1 when $x_3 = 4$ and $x_{n+1} = 4(x_n 3)$
- **10)** The value of x_1 when $x_3 = -36$ and $x_{n+1} = 4(x_n 5)$
- **11)** The value of x_1 when $x_3 = 19$ and $x_{n+1} = 2x_n 3$
- **12)** The value of x_1 when $x_3 = -20$ and $x_{n+1} = 2(x_n 6)$

Iteration - Worksheet

Applied

- 1) (a) Show that the equation $x^3 + 2x = 3$ can be rearranged to give $x = \frac{3}{2} \frac{x^3}{2}$
 - (b) Starting with $x_0 = 0$, use the iteration formula $x_{n+1} = \frac{3}{2} \frac{x_n^3}{2}$ twice, to find an estimate to the solution of $x^3 + 2x = 3$
- 2) The annual bird population in Indonesia can be modelled using the iterative formula $P_{n+1} = 1.5(P_n 600)$

The population this year is 5746 Find the population in two years time. Give your answer to 3 significant figures.

3) Below is a rectangle.

$$x-2 \qquad Area = 20 cm^2 \ x$$

- (a) Form a quadratic equation to represent the area of the rectangle. Give your answer in the form $ax^2 + bx + c = 0$
- (b) Show that the quadratic equation can be rearranged to give $x = \sqrt{2x + 20}$
- (c) Starting with $x_0 = 5$, use the iteration formula $x_{n+1} = \sqrt{2x_n + 20}$ three times, to find an estimate for the length x of the rectangle.
- 4) The annual spider population in the Amazon rainforest can be modelled using the iterative formula $P_{n+1} = 1.4(P_n 500)$

The population this year is 1437

Find the population in two years time. Give your answer to the nearest whole number.

Iteration - Exam Questions

1) An approximate solution to an equation is found using this iterative process: $x_{n+1} = \sqrt{x_n + 10}$ and $x_1 = 3$

Work out the values of x_2 and x_3

(3 marks)

2)	Using $x_{n+1} = 9 - \frac{5}{x_n^2}$ with $x_0 = 1$ find the values of:	
	(a) x_1	(1)
	(b) x_2	(1)
	(c) x_3	(1)
		(3 marks)

3) (a) Show that the equation $x^3 + 5x = 2$ can be rearranged to give $x = \frac{2}{5} - \frac{x^3}{5}$

.....(2)

(b) Starting with $x_0 = 0$, use the iteration formula $x_{n+1} = \frac{2}{5} - \frac{x_n^3}{5}$ twice, to find an estimate to the solution of $x^3 + 5x = 2$

(2) (4 marks)

	Question	Answer
	Skill Questions	
Group A	Calculate: 1) The value of x_3 when $x_1 = 5$ and $x_{n+1} = 3(x_n - 3)$ 2) The value of x_1 when $x_2 = 4$ and	1) 9
	2) The value of x_3 when $x_1 = 4$ and $x_{n+1} = 5(x_n - 5)$ 3) The value of x_3 when $x_1 = 3$ and $x_{n+1} = 3x_1 - 3$	2) – 50 3) 15
	4) The value of x_3 when $x_1 = 4$ and $x_{n+1} = 3(x_n + 5)$	4) 96
	5) The value of x_3 when $x_1 = 2$ and $x_{n+1} = 6x_n - 3$	5) 51
	6) The value of x_3 when $x_1 = 2$ and $x_{n+1} = 6x_n - 4$	6) 44
	7) The value of x_3 when $x_1 = 6$ and $x_{n+1} = 2(x_n + 3)$	7) 42
	8) The value of x_3 when $x_1 = 1$ and $x_{n+1} = 5x_n + 2$	8) 37
	9) The value of x_3 when $x_1 = 1$ and $x_{n+1} = 3(x_n - 1)$ 10) The value of x_1 when $x_2 = 2$ and	9) — 3
	10) The value of x_3 when $x_1 = 2$ and $x_{n+1} = 7x_n - 2$ 11) The value of x_1 when $x_2 = 1$ and	10) 82
	$x_{n+1} = 3(x_n + 6)$ 12) The value of x when $x = 5$ and	11) 81
	$x_{n+1} = 3x_n - 3$	12) 33

Group B	Find x_3 using the information below. Give	
	your answers to 3dp:	
	1) $x_{n+1} = \frac{3}{x_n^2 + 1}$ and $x_0 = 1$	1) 1.620
	2) $x_{n+1} = \frac{1}{3x_n^2 + 1}$ and $x_0 = 0$	2) 0.842
	3) $x_{n+1} = \frac{2-3x_n^3}{3}$ and $x_0 = 0$	3) 0. 616
	4) $x_{n+1} = \sqrt{\frac{1-2x_n^3}{3}}$ and $x_0 = 0$	4) 0. 521
	5) $x_{n+1} = \frac{3-3x_n^3}{4}$ and $x_0 = 0$	5) 0. 689
	6) $x_{n+1} = \frac{2}{3x_n^2 + 3}$ and $x_0 = 0$	6) 0.550
	7) $x_{n+1} = \sqrt{\frac{2-3x_n^3}{4}}$ and $x_0 = 0$	7) 0.644
	8) $x_{n+1} = \frac{2}{4x_n^2 + 4}$ and $x_0 = 0$	8) 0.431
	9) $x_{n+1} = \sqrt{\frac{2-2x_n^3}{5}}$ and $x_0 = 0$	9) 0. 579
	10) $x_{n+1} = \frac{1}{2x_n^2 + 3}$ and $x_0 = 0$	10) 0. 313
	11) $x_{n+1} = \sqrt{\frac{1-x_n^3}{2}}$ and $x_0 = 0$	11) 0. 639
	12) $x_{n+1} = \sqrt{\frac{-3 - x_n^3}{-3}}$ and $x_0 = 1$	12) 1. 273

Group C	Work out:	
	1) The value of x_1 when $x_2 = 0$ and	1) 2
	$x_{n+1} = 2x_n - 4.$	
	2) The value of x_1 when $x_2 = 7$ and	2) 4
	$x_{n+1} = 3x_n - 5.$	
	3) The value of x_1 when $x_2 = 6$ and	3) 6
	$x_{n+1} = 2x_n - 6$	Λ Λ
	4) The value of x_1 when $x_2 = 17$ and	4) 4
	$x_{n+1} = 5x_n - 3$	5) 6
	5) The value of x_1 when $x_3 = 54$ and $x_1 = -2(x_1 + 5)$	
	6) The value of x_1 when $x_2 = -24$ and	6) 1
	$x_{n+1} = 4(x_n - 2)^{1}$	
	7) The value of x_1 when $x_3 = 38$ and	7) 6
	$x_{n+1} = 3x_n - 4$	
	8) The value of x_1 when $x_3 = 63$ and	8) 3
	$x_{n+1} = 3(x_n + 3)$	9) 4
	9) The value of x_1 when $x_3 = 4$ and	
	$x_{n+1} = 4(x_n - 3)$ 10) The value of x, when $x_n = -36$ and	10) 4
	x = 4(x - 5)	
	11) The value of x_1 when $x_2 = 19$ and	11) 7
	$x_{n+1} = 2x_n - 3$	
	12) The value of x_1 when $x_3 = -20$ and	12) 4
	$x_{n+1} = 2(x_n - 6)$	

	Question	Answer
	Applied Questions	
1)	a) Show that the equation $x^3 + 2x = 3$ can be rearranged to give $x = \frac{3}{2} - \frac{x^3}{2}$	a) $-x^{3}$ $x^{3} + 2x = 3$ $2x = 3 - x^{3}$ $x = \frac{3}{2} - \frac{x^{3}}{2}$ $x^{3} + 2x = 3$ $x^{3} + 2x = 3$ $x^{3} + 2x = 3$ $x^{3} + 2x = 3$ $x = \frac{3}{2} - \frac{x^{3}}{2}$
	b) Starting with $x_0 = 0$, use the iteration formula $x_{n+1} = \frac{3}{2} - \frac{x_n^3}{2}$ twice, to find an estimate to the solution of $x^3 + 2x = 3$	b) $x_1 = \frac{3}{2}$ $x_2 = -\frac{3}{16}$
2)	The annual bird population in Indonesia can be modelled using the iterative formula $P_{n+1} = 1.5(P_n - 600)$ The population this year is 5746 Find the population in two years time. Give your answer to 3 significant figures.	$x_2 = 10678.5$ Population in 2017 = 10700
3)	a) Below is a rectangle. $x - 2$ $Area = 20cm^{2}$ x Form a quadratic equation to represent the area of the rectangle. Give your answer in the form $ax^{2} + bx + c = 0$ b) Show that the quadratic equation can be rearranged to give $x = \sqrt{2x + 20}$	a) $x(x-2) = 20$ $x^{2} - 2x = 20$ $x^{2} - 2x - 20 = 0$ b) $x^{2} - 2x - 20 = 0$ $x^{2} - 2x - 20 = 0$
	c) Starting with $x_0 = 5$, use the iteration formula $x_{n+1} = \sqrt{2x_n + 20}$ three times, to find an estimate for the length x of the rectangle.	c) $x_1 = 5.4772$ $x_2 = 5.5636$ $x_3 = 5.579 (3dp)$

GCSE Maths Revision | Algebra

4)	The annual spider population in the Amazon rainforest can be modelled using the iterative formula $P_{n+1} = 1.4(P_n - 500).$	x ₂ = 1136.52 Population = 1137
	The population this year is 1437	
	Find the population in two years time. Give your answer to the nearest whole number.	

Iteration - Mark Scheme

		Question	Answer	
		Exam Questions		
1)		An approximate solution to an equation is found using this iterative process $x_{n+1} = \sqrt{x_n + 10}$ and $x_1 = 3$ Work out the values of x_2 and x_3	$x_2 = \sqrt{3 + 10}$ (1) $x_2 = \sqrt{13} = 3.605551$ (1) $x_3 = 3.68857$ (1)	(3)
2)		Using $x_{n+1} = 9 - \frac{5}{x_n^2}$ with $x_0 = 1$ find the values of		(1)
	(a)	<i>x</i> ₁	(a) $x_1 = 4$	
	(b)	x ₂	(b) $x_2 = \frac{139}{16} = 8.6875$	(1)
	(c)	x ₃	(c) $x_3 = 8.93375$	(1)
3)	(a)	Show that the equation $x^{3} + 5x = 2$ can be rearranged to give $x = \frac{2}{5} - \frac{x^{3}}{5}$	(a) $x^{3} + 5x = 2$ $-x^{3}$ $5x = 2 - x^{3}$ $\div 5$ $x = \frac{2}{5} - \frac{x^{3}}{5}$ For correct first step (1) For correct second step (1)	(2)
	(b)	Starting with $x_0 = 0$, use the iteration formula $x_{n+1} = \frac{2}{5} - \frac{x_n^3}{5}$ twice, to find an estimate to the solution of $x^3 + 5x = 2$	(b) $x_1 = \frac{2}{5}$ (1) $x_2 = 0.3872$ (1)	(2)

Do you have KS4 students who need additional support in maths?

Our specialist tutors will help them develop the skills they need to succeed at GCSE in weekly one to one online revision lessons. Trusted by secondary schools across the UK.

Visit **thirdspacelearning.com** to find out more.