

Circle Theorems - Worksheet

Skill

1)

4)

7)

Group A - Angles at the Centre, Cyclic Quadrilaterals

2)

5)

8)

Calculate the size of the missing angles marked $\boldsymbol{\theta}$

3)

6)

10)

Circle Theorems - Worksheet

Group B - Alternate Segment Theorem, Angles in the Same Segment

2)

5)

8)

Calculate the size of the missing angles marked θ

3)

6)

9)

10) $D \qquad A \qquad E$ $C \qquad 40^{\circ} \qquad O$

B

GCSE Maths Revision | Geometry and Measure

Circle Theorems - Worksheet

Group C - Angles in a Semicircle, Tangent of a Circle

2)

Calculate the size of the missing angles marked $\boldsymbol{\theta}$

6)

9)

10)

4)

Circle Theorems - Worksheet

Applied

- 1)
- A, B, C and D are points on the circle with centre O.

- (a) Calculate the size of angle *ACB*. Explain your answer.
- (b) A new cord connects points *C* and *D*. Calculate the angle *BCD*.
- **2)** The diagram below shows a semicircle with the quadrilateral *ABCD* inscribed inside.

- (a) Calculate the size of angle *BCD*, labelled θ .
- (b) A line connects A and C. What is the size of angle ACB. Explain your answer.
- 3) (a) Use the diagram below to calculate the value of x.

(b) Hence or otherwise, calculate the value of y.

Circle Theorems - Worksheet

4) (a) *BC* and *AD* are parallel lines in the circle with centre *O*. Prove that *AED* is an isosceles triangle.

(b) Point F on the circumference lies between A and B. If angle $CAD = 52^{\circ}$, what is the size of angle CFD. Explain your answer.

1) (a) Prove that the angle at the centre is twice the angle at the circumference.

(5)

(b) Use this theorem to calculate the missing angle in the diagram:

(3) (8 marks)

2) (a) Prove that angles in the same segment are equal.

(3)

(b) Use this theorem to calculate the missing angle in the diagram:

(5) (8 marks)

3) (a) Prove that the angle in a semicircle is 90 degrees.

.....(4)

(b) Use this theorem to calculate the missing angle in the diagram:

(4) (8 marks)

4) (a) Prove that opposite angles in a cyclic quadrilateral total 180 degrees.

.....(4)

(b) Use this theorem to calculate the missing angle in the diagram:

(3) (7 marks)

	Question	Answer
	Skill Questions	
Group A	Calculate the size of the missing angles marked θ 1) A θ C D 140° B	1) 70°
	2) A θ B	2) 130°
	$\begin{array}{c} \textbf{3)} \qquad A \\ D \qquad \theta \\ 0 \qquad 91^{\circ} \qquad B \\ C \end{array}$	3) 89°
	$ \begin{array}{c} \textbf{4)} & A \\ D & \theta \\ C \end{array} \\ B \\ C \end{array} $	4) 112°
	5) A $C_{38^{\circ}}$ B D	5) 76°

Helping schools close the maths attainment gap through targeted one to one teaching and flexible resources

Group A	11)	11) 30°
contd	$\begin{array}{c} 300^{\circ} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	12) 94°
	$\begin{array}{c} A \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 38^{\circ} \\ 0 \\ C \\ D \end{array}$	
Group B	Calculate the size of the missing angles marked $\boldsymbol{\theta}$	
	1) $D \xrightarrow{B} \theta \cdot O C$ $A \xrightarrow{76^{\circ}} E$	1) 76°
	$ \begin{array}{c} 2) & C \\ & B \\ & \theta \\ & D \\ & A \\ & E \end{array} $	2) 52°
	$\begin{array}{c} \textbf{3)} \qquad A \\ D \qquad 23^{\circ} \\ \theta \\ C \end{array} B \\ C \end{array}$	3) 23°

Group B contd	$\begin{array}{cccc} 10 & D & A & E \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & $	10) 20°
	$\begin{array}{c} \textbf{11)} & B & E & C \\ A & & & \theta \\ A & & & D \end{array}$	11) 90°
	12) $B \xrightarrow{O_{\bullet} 56^{\circ}} D$	12) 28°
Group C	Calculate the size of the missing angles marked $\boldsymbol{\theta}$	
	1) B $A \qquad 0$ 22° C	1) 68°
	2) $A \xrightarrow{A3^{\circ}} \theta$	2) 47°
	$\begin{array}{c} \textbf{3)} B \\ \bullet \\ \bullet \\ A \\ D \end{array} C \\ \end{array}$	3) 23°

Group C contd	4)	A	4) 42°
	5)	$B \qquad 0 \qquad C \qquad D \qquad \theta \qquad C \qquad A \qquad 77^{\circ} \qquad C$	5) 13°
	6)		6) 47°
	7)	C C A θ D D D H	7) 51°
	8)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8) 120°
	9)		9) 74°

Group C	10) D	10) 45°
contd		
	11) $B \qquad 0 40^{\circ} C$ $E D^{\theta} \qquad A \qquad E$	11) 40°
	12) B $150^{\circ}O$ C D A E	12) 35°

	Qı	Jestion	Ar	nswer
	Ар	plied Questions		
1) A, E cen		A, B, C and D are points on the circle with centre 0. $A = \begin{bmatrix} A & & \\ &$		
	a)	Calculate the size of angle <i>ACB</i> . Explain your answer.	a)	$ADB = 180 - (68 + 54) = 58^{\circ}$ Angles in a triangle total 180° $ACB = ADB = 58^{\circ}$ Angles in the same segment are equal.
	b)	A new chord connects points <i>C</i> and <i>D</i> . Calculate the angle <i>BCD</i> .	b)	$180 - 68 = 112^{\circ}$
2)		The diagram below shows a semicircle with the quadrilateral <i>ABCD</i> inscribed inside. $A \xrightarrow{79^{\circ}} \Theta \xrightarrow{C} C$		
	a)	Calculate the size of angle <i>BCD</i> .	a)	$BCD = 180 - 79 = 101^{\circ}$
	b)	A line connects <i>A</i> and <i>C</i> . What is the size of angle <i>ACB</i> . Explain your answer.	b)	90° as the angle in a semicircle is 90°.

3)	a) b)	Use the diagram below to calculate the value of x. $A \xrightarrow{43^{\circ} y} B$ $D \xrightarrow{C} C$ Hence or otherwise, calculate the value of y.	a) b)	As ACD is an isosceles triangle and angle $ADC = 90^{\circ}, x = (180 - 90) \div 2 = 45^{\circ}$ $BOC = 2 \times 43 = 86^{\circ}$ $100 = 86 = 04^{\circ}$
				$y = 94 \div 2 = 47^{\circ}$
4)	a)	BC and AD are parallel lines in the circle with centre 0. Prove that AED is an isosceles triangle. B O	a)	ABCD is an isosceles trapezium as AD and BC are parallel, and $AB = CD$. This means that the $AE = DE$ as the point E is the same distance along both diagonals BD and AC. CAD = CBD as angles in the same segment are equal. CAD = ACB as alternate angles are equal. Therefore $DAE = ADE = \theta$. $CED = 2CAD = 2\theta$ as the angle at the centre is twice the angle at the circumference. As AEC is a straight line, angle $AED = 180 - 2\theta$. The triangle has two equal sides and two equal angles and so it is an isosceles triangle. Note, if $\theta = 60^{\circ}$ then triangle AED is an equilateral triangle (a special type of isosceles triangle).
	b)	Point F on the circumference lies between A and B. If angle $CAD = 52^{\circ}$, what is the size of angle CFD. Explain your answer.	b)	$CFD = 52^{\circ}$ Angles in the same segment are equal

	Question	Answer	
	Exam Questions		
1) (a)	Prove that the angle at the centre is twice the angle at the circumference. A C	(a) A A x y	 (1) (1) (1) (1)
(b)	Use this theorem to calculate the missing angle in the diagram: D B	(b) $CED = 84 \times 2 = 168$ $\theta = 360 - 168 = 192^{\circ}$ Angles around a point total 360°	(1) (1) (1)

3) (a)	Prove that the angle in a semicircle is 90 degrees.	(a) C C x y y B x o A x A x o A x A x A x A A x A		
			we can state that angle $OAC = OCA = x$, and OBC = OCB = y. This means that angle ACB = x + y.	(1)
			As angles in a triangle total 180° x + y + x + y = 180 2x + 2y = 180 $x + y = 90^{\circ}$.	(1)
(b)	Use this theorem to calculate the missing angle in the diagram: $B \xrightarrow{C} B \xrightarrow{C} A \xrightarrow{C}$	(b)	$ACD = 90^{\circ}$ $CED = 32^{\circ}$ CDE = 180 - (90 + 32) $\theta = 58^{\circ}$	(1) (1) (1) (1)

Do you have KS4 students who need additional support in maths? Our specialist tutors will help them develop the skills they need to succeed at GCSE in weekly one to one online revision lessons. Trusted by secondary schools across the UK. Visit thirdspacelearning.com to find out more.