

Simple Vectors - Worksheet

Skill

Group A – Finding equivalent vectors

The shape below is made from a lattice of identical triangles.

Use the arrow notation as above to list all the vectors equivalent to the following.

1) \overrightarrow{AG}	2) \vec{BD}	3) <i>BE</i>
4) \vec{AJ}	5) \vec{IB}	6) \vec{AK}
7) \vec{CI}	8) <i>LE</i>	9) <i>DE</i>

Group B – Using vector notation to find routes

The shape below is made from a lattice of identical triangles. $\vec{AB} = m$ and $\vec{AF} = n$

Write the following vectors in terms of m and n.

1) \vec{CD}	2) <i>HG</i>	3) \vec{EJ}
4) \vec{LB}	5) \vec{AG}	6) \vec{EL}
7) \vec{CG}	8) <i>HJ</i>	9) <i>DI</i>

Group C – Finding routes using vectors

In the diagram *OACB* is a parallelogram. *C* is the midpoint of *AD*. *M* is the midpoint of *OC*. *N* is the midpoint of *BD*.

$$\vec{OA} = a \text{ and } \vec{OB} = b$$

 $A \qquad C \qquad D$
 $a \qquad M \qquad N$
 $O \qquad b \qquad B$

Find the following vectors in terms of a and b.

1)
$$\vec{AC}$$
 2) \vec{OC} **3)** \vec{AD}

4)
$$\vec{CB}$$
 5) \vec{BA} **6)** \vec{OM}

7)
$$\vec{ON}$$
 8) \vec{MN} **9)** \vec{NA}

Simple Vectors - Worksheet

Applied

 A drone is being used to deliver packages. The drone base is at point *O*. The drone is programmed to fly to its destination by using multiples of the vectors *a* and *b*.

Drone base

- (a) What vectors must be used to deliver packages to(i) point Q(ii) point P
- (b) The drone can be programmed to travel between U and V using the following instruction.

Use this to find the program required to deliver to point R from the drone base.

2) The map shows a simple tram network connecting six areas of a town. Cakeville is halfway between Aberville and Dinaton

The trams can be treated as vectors using the labels a, b, c and d, and the codes above.

- (a) Write the vector required to travel from Aberville to Eagleview.
- (b) Write the vector required to travel from Featherston to Breadstone.

3) The diagram shows points on a coordinate grid.

- (a) Use the points to find a vector equivalent to \vec{BA}
- (b)

 $\overrightarrow{AF} = \begin{pmatrix} 4\\ -1 \end{pmatrix}$

Write column vectors to represent \vec{FE} , \vec{EG} and \vec{AG} , and use them to show that $\vec{AF} + \vec{FE} + \vec{EG} = \vec{AG}$.

The grid shows vectors represented by arrows.

4)

$$\overrightarrow{OA} = \mathbf{a} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \ \overrightarrow{OB} = \mathbf{b} = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$$

- (a) On a copy of the grid label points C and D to represent so that $\vec{OC} = 2a + b$
- (b) On a copy of the grid label points C and D to represent so that $\vec{BD} = -2a - 3b$

© Third Space Learning 2021. You may photocopy this page.

5

Simple Vectors - Exam Questions

1)

The diagram shows the parallelogram OACB.

$$\vec{OA} = 2a$$
$$\vec{OB} = 2b$$

M is the midpoint of *AB*.

Find in terms of *a* and *b*:

thirdspacelearning.com Helping schools close the maths attainment gap through targeted one to one teaching and flexible resources

The diagram shows the triangle OAB.

$$\vec{OA} = a$$
$$\vec{OB} = b$$

2)

N is a point on the line AB such that AN: NB = 1:2.

Find in terms of *a* and *b*:

(1)	<i>BA</i>	(a)
(3)	\vec{ON}	(b)
(3) (4 marks)		

The diagram shows the trapezium OABC.

3)

(a)

(b)

$$\vec{OA} = 3a$$

$$\vec{AB} = 2b$$

$$\vec{OC} = 2\vec{AB}$$

$$D \text{ is the midpoint of } BC.$$

Find in terms of a and b:

$$\vec{BC}$$

$$\vec{OD}$$

8

(5 marks)

(2)

(3)

The diagram shows the vectors

4)

On a copy of the grid, draw arrows to represent the vectors:

		(5 marks)
(~)	OQ = 2a + b	(3)
(b)	\rightarrow	
(<i>a)</i>	$\vec{OP} = -2a$	(2)
(9)	->	

Simple Vectors - Answers

	Question	Answer
	Skill Questions	
Group A	The shape below is made from a lattice of identical triangles. A B C D $E F G H$ $I J K L$ $AB = EF = BC and$ $AE = EI = BF$ Use the arrow notation as above to list all the vectors equivalent to the following. 1) \overrightarrow{AG} 2) \overrightarrow{BD} 3) \overrightarrow{BE} 4) \overrightarrow{AJ} 5) \overrightarrow{IB} 6) \overrightarrow{AK} 7) \overrightarrow{CI} 8) \overrightarrow{LE} 9) \overrightarrow{DE}	1) \vec{EK} , \vec{BH} , \vec{FL} 2) \vec{AC} , \vec{EG} , \vec{FH} , \vec{IK} , \vec{JL} 3) \vec{CF} , \vec{DG} , \vec{FI} , \vec{GJ} , \vec{HK} 4) \vec{BK} , \vec{CL} 5) \vec{JC} , \vec{KD} 6) \vec{BL} 7) \vec{DJ} 8) \vec{HA} 9) \vec{HI}

Group B	The shape below is made from a lattice of	
	identical triangles. $AB \stackrel{\rightarrow}{=} m$ and $\overrightarrow{AF} = n$	
	A M B C D N	
	Write the following vectors in terms of m	
	and <i>n</i> .	
	1) \vec{CD}	1) <i>m</i>
		2) – <i>m</i>
	3) <i>ĒJ</i>	3) <i>n</i>
	4) \vec{LB}	4) - 2n
	5) \overrightarrow{AG}	5) <i>m</i> + <i>n</i>
	$\mathbf{6)} \; \vec{EL}$	6) 2m + n
	7) \vec{CG}	7) <i>n</i> - <i>m</i>
	8) <i>H</i> J	8) n - 3m
	9) <i>DI</i>	9) 2n – 5m

12

Simple Vectors - Answers

Simple Vectors - Mark Scheme

		Question	An	swer	
		Exam Questions			
1)		$\vec{A} \qquad C$ $2a \qquad M$ $2a \qquad M$ $O \qquad 2b \qquad B$ The diagram shows the parallelogram <i>OACB</i> . $\vec{OA} = 2a$ $\vec{OB} = 2b$ $M \text{ is the midpoint of } AB.$ Find in terms of <i>a</i> and <i>b</i> :			
	(a)	\overrightarrow{AB}	(a)	2b - 2a(1)	(1)
	(b)	\vec{OM}	(b)	Using half of \overrightarrow{AB} (1) a + b (1)	(2)

2)					
		The diagram shows the triangle <i>OAB</i> . $\vec{OA} = a$ $\vec{OB} = b$ <i>N</i> is a point on the line <i>AB</i> such that <i>AN</i> : <i>NB</i> = 1: 2.			
		Find in terms of <i>a</i> and <i>b</i> :			
	(a)	_B A	(a)	a - b (1)	(1)
	(b)	<i>o</i> n	(b)	Ratio of 1: 2 used correctly (1) Use of $\vec{OB} + \frac{2}{3}\vec{BA}$ (1) $\frac{2}{3}a + \frac{1}{3}b$ (1)	(3)

3)		A 2 b B			
		0 C			
		The diagram shows the trapezium			
		UADC.			
		$\vec{OA} = 3a$			
		$\overrightarrow{AB} = 2b$			
		$\vec{OC} = 2\vec{AB}$			
		<i>D</i> is the midpoint of <i>BC</i> .			
		Find in terms of <i>a</i> and <i>b</i> :			
	(a)	<i>BC</i>	(a)	-2b - 3a + 4b seen (1)	(2)
				2b - 3a (1)	
	(b)	\vec{OD}	(b)	Use of $3a + 2b + \frac{1}{2}\vec{BC}(1)$	(3)
				$2 \cdot 2 \cdot 1 \cdot (2 \cdot 2 \cdot 2 \cdot 1) (1)$	
				$3a - 2b + \frac{1}{2}(2b - 3a)$ seen (1)	
				$\frac{2}{3}a + 3b$ (1)	

4)		$\mathbf{a} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ The diagram shows the vectors $\mathbf{b} = \begin{pmatrix} -1 \\ -3 \end{pmatrix}$, and the point <i>O</i> .			
	(a)	$\vec{OP} = -2a$	(a)	$\frac{a}{p} + b$ $\frac{a}{p} + b$ \frac{a}	(2)
	(b)	$\vec{OQ} = 2a + b$	(b)	Evidence of using $2a + b$ (1) Line correct length and direction (1) Correct position (1)	(3)

Do you have KS4 students who need additional support in maths?

Our specialist tutors will help them develop the skills they need to succeed at GCSE in weekly one to one online revision lessons. Trusted by secondary schools across the UK.

Visit **thirdspacelearning.com** to find out more.