Quadratic Sequences - Worksheet

Skill

Group A - Generate terms of quadratic sequences with a = 1Calculate the first five terms for each quadratic sequence. **1)** n^2 **2)** $n^2 + 1$ **3)** $n^2 - 8$

_,		
4) $n^2 + 4n$	5) $n^2 - 3n$	6) $n^2 + 4n + 3$
7) $n^2 - 5n - 8$	8) $n(n + 5)$	9) $n(n-5) + 10$

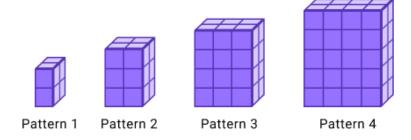
Group B - Generate terms of quadratic sequences with $a \neq 1$

Calculate the first five terms for each quadratic sequence:

1) $2n^2$	2) $4n^2 + 3$	3) $5n^2 - 7$
4) $0.5n^2 + 3$	5) $\frac{n^2}{10}$ + 6	6) $-3n^2 + 5n$
7) $-2n^2 - 2n - 3$	8) 2n(n + 1)	9) - n(n - 4) + 3

Group C - Find the nth term of quadratic sequences

Find the *nth* term for the following quadratic sequences:


1) 6, 9, 14, 21, 30	2) 2, 6, 12, 20, 30	3) 4, 9, 16, 25, 36
4) - 9, - 10, - 9, - 6, - 1	5) 8, 14, 24, 38, 56	6) - 1, 4, 15, 32, 55
7) 13, 31, 57, 91, 133	8) 0.2, 0.8, 1.8, 3.2, 5	9) 7, 12, 15, 16, 15

Quadratic Sequences - Worksheet

Applied

- 1) Work out an expression for the n^{th} term of the quadratic sequence: 6, 11, 18, 27, 38 Give your answer in the form $an^2 + bn + c$ where a, b, and c are constants.
- 2) Below are the first four cuboids in a sequence. Each cuboid is split into 1*cm* cubes. The front face is highlighted in purple.

- (a) What is the area of the front face of Pattern 5?
- (b) What is the area of the front face of Pattern *n*?

3) Each term in the arithmetic sequence 5, 7, 9, 11, 13, ... is squared.

- (a) Calculate the n^{th} term of the new, quadratic sequence.
- (b) What is the value of the 10^{th} term in this quadratic sequence?

HIRD SPACE

Quadratic Sequences - Exam Questions

1) (a) Write down the next two terms in the following quadratic sequence:

11, 15, 21, 29, ...

(b) By determining the second difference, write an expression for the n^{th} term.

(3) (4 marks)

2) Which of these sequences is a quadratic sequence. Circle your answer.

4, 5, 9, 14, 23, ... - 6, - 11, - 16, - 21, - 26, ... 7, 13, 23, 37, 55, ... 8, 4, 2, 1, 0. 5, ...

.....(1 mark)

3) (a) The n^{th} term of a sequence is $n^2 + 4n - 1$. Work out the 8th term of the sequence.

(1)

(b) What value for *n* in the sequence above has a term value of 44? Do not use trial and improvement.

(3) (4 marks)

Quadratic Sequences - Exam Questions

	The n^{th} term of a sequence is $2n - n^2$.	
(a)	Calculate the difference between the 5^{th} and 8^{th} term.	
		(3)
(b)	Which term of the sequence is equal to -35 ?	
		(3)
(c)	Which term of the sequence is equal to 0?	
		(2)
		(8 marks)

5) Work out the formula for the n^{th} term of the sequence:

19, 15, 9, 1, ...

Write your answer in the form $an^2 + bn + c$ where *a*, *b*, and *c* are constants.

(4 marks)

Quadratic Sequences - Answers

	Question	Answer
	Skill Questions	
Group A	Calculate the first five terms for each quadratic sequence.	
	1) n^2	1) 1, 4, 9, 16, 25
	2) $n^2 + 1$	2) 2, 5, 10, 17, 26
	3) $n^2 - 8$	3) - 7, - 4, 1, 8, 17
	4) $n^2 + 4n$	4) 5, 12, 21, 32, 45
	5) $n^2 - 3n$	5) - 2, - 2, 0, 4, 10
	6) $n^2 + 4n + 3$	6) 8, 15, 24, 35, 48
	7) $n^2 - 5n - 8$	7) - 12, - 14, - 14, - 12, - 8
	8) $n(n + 5)$	8) 6, 14, 24, 36, 50
	9) $n(n-5) + 10$	9) 6, 4, 4, 6, 10
Group B	Calculate the first five terms for each quadratic sequence:	
	1) $2n^2$	1) 2, 8, 18, 32, 50
	2) $4n^2 + 3$	2) 7, 19, 39, 67, 103
	3) $5n^2 - 7$	3) - 2, 13, 38, 73, 118
	4) $0.5n^2 + 3$	4) 3.5, 5, 7.5, 11, 15.5
	5) $\frac{n^2}{10}$ + 6	5) 6. 1, 6. 4, 6. 9, 7. 6, 8. 5
	6) $-3n^2 + 5n$	6) 2, - 2, - 12, - 28, - 50
	7) $-2n^2 - 2n - 3$	7) - 7, - 15, - 27, - 43, - 63
	8) $2n(n + 1)$	8) 4, 12, 24, 40, 60
	9) $- n(n - 4) + 3$	9) 6, 7, 6, 3, - 2

Quadratic Sequences - Answers

Group C	Find the n^{th} term for the following quadratic sequences:	
	1) 6, 9, 14, 21, 30	1) $n^2 + 5$
	2) 2, 6, 12, 20, 30	2) $n^2 + n$
	3) 4, 9, 16, 25, 36	3) $n^2 + 2n + 1$ or $(n + 1)^2$
	4) - 9, - 10, - 9, - 6, - 1	4) $n^2 - 4n - 6$
	5) 8, 14, 24, 38, 56	5) $2n^2 + 6$
	6) - 1, 4, 15, 32, 55	6) $3n^2 - 4n$
	7) 13, 31, 57, 91, 133	7) $4n^2 + 6n + 3$
	8) 0. 2, 0. 8, 1. 8, 3. 2, 5	8) $\frac{n^2}{5}$
	9) 7, 12, 15, 16, 15	9) $n(8 - n)$ or $8n - n^2$

Quadratic Sequences - Answers

	Question	Answer
	Applied Questions	
1)	Work out an expression for the n^{th} term of the quadratic sequence: 6, 11, 18, 27, 38	$n^2 + 2n + 3$
	Give your answer in the form $an^2 + bn + c$ where <i>a</i> , <i>b</i> , and <i>c</i> are constants.	
2)	Below are the first four cuboids in a sequence.	
	Each cuboid is split into $1cm$ cubes. The front	
	face is highlighted in purple.	
	Pattern 1 Pattern 2 Pattern 3 Pattern 4	
	a) What is the area of the front face of Pattern 5?	a) $30cm^2$
	b) What is the area of the front face of Pattern <i>n</i> ?	b) $n(n + 1) = n^2 + n$
3)	Each term in the arithmetic sequence	
	5, 7, 9, 11, 13, is squared.	
	a) Calculate the n^{th} term of the new, quadratic sequence.	a) $(2n+3)^2 = 4n^2 + 12n + 9$
	b) What is the value of the 10 th term in this quadratic sequence?	b) 529

Quadratic Sequences - Mark Scheme

	Question	Answer	
	Exam Questions		
1) (a) Write down the next two terms in the following quadratic sequence: 11, 15, 21, 29,	(a) 39, 51	(1)
(b) By determining the second difference, write an expression for the n^{th} term.	(b) n^2 n + 9 $n^2 + n + 9$	(1)(1)(1)
2)	Which of these sequences is a quadratic sequence. Circle your answer.	7, 13, 23, 37, 55	(1)
	4, 5, 9, 14, 23, -6 , -11 , -16 , -21 , -26 , 7, 13, 23, 37, 55, 8, 4, 2, 1, 0.5,		
3) (a) The n^{th} term of a sequence is $n^2 + 4n - 1$. Work out the 8 th term of the sequence.	(a) 95	(1)
(b	What value for <i>n</i> in the sequence above has a term value of 44? Do not use trial and improvement.	(b) $n^{2} + 4n - 1 = 44$ $n^{2} + 4n - 45 = 0$ (n + 9)(n - 5) = 0 so $n = 5$ only.	(1)(1)(1)
4)	The n^{th} term of a sequence is $2n - n^2$.		
(a	Calculate the difference between the 5^{th} and 8^{th} term.	(a) 5th term = -15 8th term = -48 5th term -8 th term = 33	(1) (1) (1)
(b) Which term of the sequence is equal to - 35?	(b) $2n - n^2 = -35$ $n^2 - 2n - 35 = 0$ (n - 7)(n + 5) = 0 so $n = 7$ only.	(1)(1)(1)
(c) Which term of the sequence is equal to 0?	(c) $n(2 - n) = 0$ n = 2 only.	(1) (1)
		Or using substitution of $n = 1$ and $n = 2$ into the n^{th} term n = 2.	(1) (1)

Quadratic Sequences - Mark Scheme

5)	Work out the formula for the nth term of the sequence: 19, 15, 9, 1,	Second difference = -2 $-n^2 = -1$, -4 , -9 , -16 , -25 ,	(1)
	Write your answer in the form $an^2 + bn + c$ where <i>a</i> , <i>b</i> , and <i>c</i> are constants.	20, 19, 18, 17, 16, (= $21 - n$ or $-n + 21$)	(1)
	constants.	$n \text{th term} = -n^2 - n + 21$	(1)
		a = -1, b = -1, c = 21.	(1)

Do you have KS4 students who need additional support in maths? Our specialist tutors will help them develop the skills they need to succeed at GCSE in weekly one to one online revision lessons. Trusted by secondary schools across the UK. Visit **thirdspacelearning.com** to find out more.