

## **Quadratic Graphs - Worksheet**

### Skill

### Group A - Graphs of simple quadratic functions

Plot the graphs of these functions, using the x values given.

| <b>1)</b> $y = x^2 + 1, -3 \le x \le 3$      | <b>2)</b> $y = x^2 + 3, -3 \le x \le 3$      | <b>3)</b> $y = x^2 - 3, -3 \le x \le 3$      |
|----------------------------------------------|----------------------------------------------|----------------------------------------------|
| <b>4)</b> $y = x^2 + 3x, -5 \le x \le 2$     | <b>5)</b> $y = x^2 + 4x, -6 \le x \le 2$     | <b>6)</b> $y = x^2 - 2x, -2 \le x \le 4$     |
| <b>7)</b> $y = x^2 + 3x + 1, -5 \le x \le 3$ | <b>8)</b> $y = x^2 + 2x + 1, -5 \le x \le 3$ | <b>9)</b> $y = x^2 - 3x + 1, -2 \le x \le 5$ |

### Group B - Graphs of more tricky quadratic functions

Plot the graphs of these functions, using the x values given.

| <b>1)</b> $y = x^2 - 2x, -3 \le x \le 5$   | <b>2)</b> $y = x^2 + 2x + 5, -4 \le x \le 2$  | <b>3)</b> $y = x^2 - 2x + 5, -2 \le x \le 4$ |
|--------------------------------------------|-----------------------------------------------|----------------------------------------------|
| <b>4)</b> $y = 3 - x^2$ , $-3 \le x \le 3$ | <b>5)</b> $y = 3x - x^2, -3 \le x \le 5$      | <b>6)</b> $y = 3 + 2x - x^2, -2 \le x \le 4$ |
| <b>7)</b> $y = 2x^2 + 4x, -4 \le x \le 2$  | <b>8)</b> $y = 4x + 2x^2 + 3, -4 \le x \le 2$ | <b>9)</b> $y = 4x - 2x^2$ , $-1 \le x \le 3$ |

#### Group C - Finding key points and sketching quadratic graphs

Find the turning points and y-intercepts of these quadratic functions, then sketch their graphs.

| <b>1)</b> $y = x^2 + 6x + 8$ | <b>2)</b> $y = x^2 + 8x + 12$ | <b>3)</b> $y = x^2 - 2x - 8$ |
|------------------------------|-------------------------------|------------------------------|
| <b>4)</b> $y = x^2 + 3x$     | <b>5)</b> $y = x^2 - 3x$      | <b>6)</b> $y = 2x^2 + 3x$    |
| <b>7)</b> $y = 4x - 2x^2$    | <b>8)</b> $y = 4x + 2x^2 + 3$ | <b>9)</b> $y = 4x + 2x^2$    |

### **Quadratic Graphs - Worksheet**

### Applied

- 1) a) Draw the graph of the function  $y = x^2 + 2x + 4$ ,  $-4 \le x \le 2$ 
  - **b)** Use your graph to write down the coordinates of the turning point. Is it a maximum or a minimum?
  - c) What happens when you try to solve the equation  $x^2 + 2x + 4 = 0$ ? Use your graph to explain why this happens.
- 2) a) Draw the graph of the function  $y = x^2 5x + 6$ ,  $-1 \le x \le 6$ 
  - b) Solve the equation  $x^2 5x + 6 = 0$ . Where can you see these solutions on the graph?
  - c) Use your graph to estimate the coordinates of the turning point. Check your answer algebraically by completing the square on the expression  $x^2 5x + 6$ .
- 3) a) Draw the graph of the function  $y = 2x + 8 x^2$ ,  $-3 \le x \le 5$ .
  - **b)** Write down the coordinates of the vertex and roots.
  - c) Using the graph, estimate the solutions to the equation  $2x + 8 x^2 = 4$ .
  - d) Using the graph, find the solutions to the equation  $2x + 8 = x^2$ .
  - e) Using the graph, find the solutions to the equation  $2x + 8 x^2 = 2x + 4$ . Check your answer algebraically.



1)

**(a)** 

**(b)** 

## **Quadratic Graphs - Exam Questions**

On the grid draw the graph of

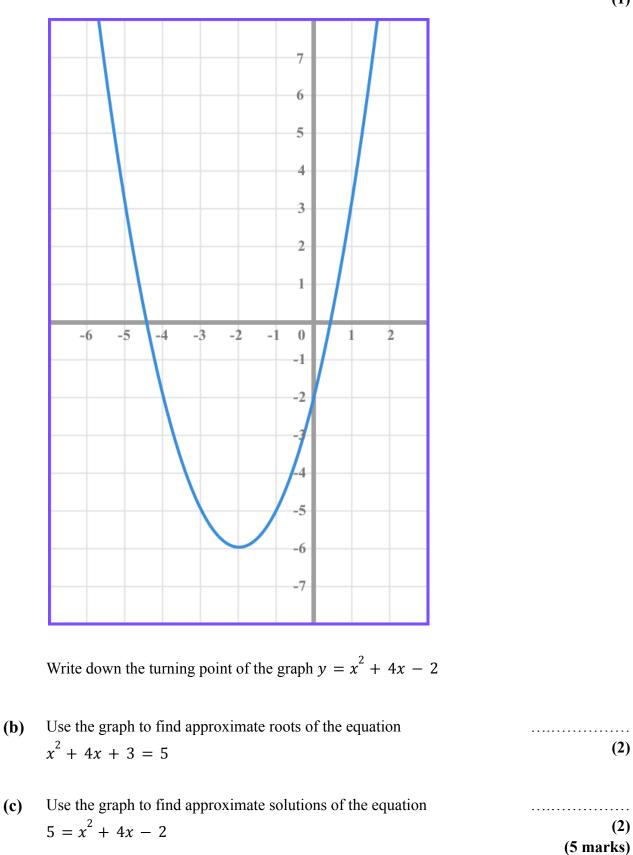
 $y = x^2 - 5x - 2$  for values of x from -1 to 6

© Third Space Learning 2021. You may photocopy this page. 3

4 3 2 1 -2 -1 0 1 2 3 4 5 6 -1 -2 -3 -4 -5 -6 -7 -8 -9

(c) Use the graph to find estimates of the solutions to the equation  $-4 = x^2 - 5x - 2$ 

(2) (6 marks)


(2)

(2)

Complete the table of values for  $y = x^2 - 5x - 2$ 

| x | -1 | 0 | 1  | 2 | 3 | 4 | 5  | 6 |
|---|----|---|----|---|---|---|----|---|
| y |    |   | -6 |   |   |   | -2 |   |





THIRD SPACE LEARNING 

| 3) | <b>(a)</b> | Complete the table of values for $y = 3 - 2x - x^2$ |  |
|----|------------|-----------------------------------------------------|--|
|    |            |                                                     |  |

| x | -4 | -3 | -2 | -1 | 0 | 1 | 2 |
|---|----|----|----|----|---|---|---|
| y |    |    | 3  |    |   | 0 |   |

(2)

(2)

(b) Draw the graph of  $y = 3 - 2x - x^2$  for values of x from -4 to 2.

|                | 6  |
|----------------|----|
|                | 5  |
|                |    |
|                | 4  |
|                | 3  |
|                | 2  |
|                |    |
|                | 1  |
|                |    |
| -5 -4 -3 -2 -1 |    |
|                | -1 |
|                | -2 |
|                | -3 |
|                | -4 |
|                |    |
|                | -5 |
|                |    |
|                | -6 |
|                | -5 |

| (c) | Use the graph to find estimates of the solutions to the equation<br>$3 - 2x = x^2$           | (2)              |
|-----|----------------------------------------------------------------------------------------------|------------------|
| (d) | Use the graph to find the coordinates of the turning point of the graph $y = 3 - 2x - x^2$ . | (1)<br>(7 marks) |



## **Quadratic Graphs - Answers**

|         | Question                                                                                                                                                                                                                                                                 | Answer                                                                                                           |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Group A | Skill Questions                                                                                                                                                                                                                                                          |                                                                                                                  |
|         | Plot the graphs of these functions, using<br>the x values given.<br>You can plot each set of three graphs on<br>one set of axes to speed things up.<br>1) $y = x^2 + 1$ , $-3 \le x \le 3$<br>2) $y = x^2 + 3$ , $-3 \le x \le 3$<br>3) $y = x^2 - 3$ , $-3 \le x \le 3$ | <b>1-3</b> )<br>$() y = x^2 + 1$<br>$() y = x^2 + 3$<br>$() y = x^2 + 3$<br>$() y = x^2 + 3$<br>$() y = x^2 - 3$ |
|         | 4) $y = x^{2} + 3x, -5 \le x \le 2$<br>5) $y = x^{2} + 4x, -6 \le x \le 2$<br>6) $y = x^{2} - 2x, -2 \le x \le 4$                                                                                                                                                        | 4-6)<br>$v = x^2 + 3x$<br>$v = x^2 + 4x$<br>$v = x^2 - 2x$                                                       |



|         | 7) $y = x^{2} + 3x + 1, -5 \le x \le 3$<br>8) $y = x^{2} + 2x + 1, -5 \le x \le 3$<br>9) $y = x^{2} - 3x + 1, -2 \le x \le 5$                                                                                                                                                       | <b>7-9)</b><br>$y = x^2 + 3x + 1$<br>$y = x^2 + 2x + 1$<br>$y = x^2 - 3x + 1$<br>$y = x^2 - 3x + 1$                   |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Group B | Plot the graphs of these functions, using<br>the x values given.<br>You can plot each set of three graphs on<br>one set of axes to speed things up.<br>1) $y = x^2 - 2x$ , $-3 \le x \le 5$<br>2) $y = x^2 + 2x + 5$ , $-4 \le x \le 2$<br>3) $y = x^2 - 2x + 5$ , $-2 \le x \le 4$ | <b>1-3)</b><br>$y = x^2 - 2x$<br>$y = x^2 - 2x + 5$<br>$y = x^2 - 2x + 5$<br>$y = x^2 - 2x + 5$<br>$y = x^2 - 2x + 5$ |
|         | 4) $y = 3 - x^{2}$ , $-3 \le x \le 3$<br>5) $y = 3x - x^{2}$ , $-3 \le x \le 5$<br>6) $y = 3 + 2x - x^{2}$ , $-2 \le x \le 4$                                                                                                                                                       | 4-6)<br>$y = 3 - x^{2}$<br>$y = 3x - x^{2}$<br>$y = 3 - x^{2}$<br>$y = 3x - x^{2}$<br>$y = 3 + 2x - x^{2}$            |
|         | 7) $y = 2x^{2} + 4x$ , $-4 \le x \le 2$<br>8) $y = 4x + 2x^{2} + 3$ , $-4 \le x \le 2$<br>9) $y = 4x - 2x^{2}$ , $-1 \le x \le 3$                                                                                                                                                   | <b>7-9)</b><br>$y = 4x - 2x^2$<br>$y = 4x + 2x^2 + 3$<br>$y = 4x + 2x^2$                                              |



# **Quadratic Graphs - Answers**

|         | Question                                                                                                                                                                                                                                                         | Answer                                                                                                                                                                                                                                                                                                               |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Group C | Skill Questions                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                      |
|         | Find the key points of these quadratic<br>functions algebraically, then sketch their<br>graphs.<br>You can sketch each set of three graphs on<br>one set of axes to speed things up.<br>1) $y = x^2 + 6x + 8$<br>2) $y = x^2 + 8x + 12$<br>3) $y = x^2 - 2x - 8$ | 1-3)<br>$y = x^{2} + 6x + 8$ $y = x^{2} + 6x + 8$ $y = x^{2} + 6x + 8$ Roots (-4,0) and (-2,0)<br>Vertex (-3,-1)<br>y-intercept (0,8)<br>$y = x^{2} + 8x + 12$ Roots (-6,0) and (-2,0)<br>Vertex (-4,-4)<br>y-intercept (0,-8)<br>$y = x^{2} - 2x - 8$ Roots (-2,0) and (4,0)<br>Vertex (1,-9)<br>y-intercept (0,12) |
|         | 4) $y = x^{2} + 6x + 8$<br>5) $y = x^{2} + 8x + 12$<br>6) $y = x^{2} - 2x - 8$                                                                                                                                                                                   | 4-6)<br>$y = x^{2} + 3x$<br>$y = x^{2} + 3x$<br>Roots (0,0) and (-3,0)                                                                                                                                                                                                                                               |



7) 
$$y = 4 - x^2$$

 8)  $y = x^2 - 3x$ 

 Roots (0.0) and (3.0)

 Vertex  $(\frac{3}{2}, \frac{3}{4})$ 

 y-intercept (0.0)

  $y = 2x^2 + 3x$ 

 Roots (0.0) and  $(\frac{3}{2}, 0)$ 

 Vertex  $(\frac{3}{2}, \frac{9}{4})$ 

 y-intercept (0.0)

  $y = 2x^2 + 3x$ 

 Roots (0.0) and  $(\frac{3}{2}, 0)$ 

 Vertex  $(\frac{3}{2}, \frac{9}{4})$ 

 y-intercept (0.0)

  $y = 4 - x^2$ 

 9)  $y = x^2 + 4$ 
 $y = 4 - x^2$ 

 Roots (2.0) and (-2.0)

 Vertex (0.4)

 y-intercept (0.4)

 y = 4 + 3x - x^2

 Roots (-1.0) and (4.0)

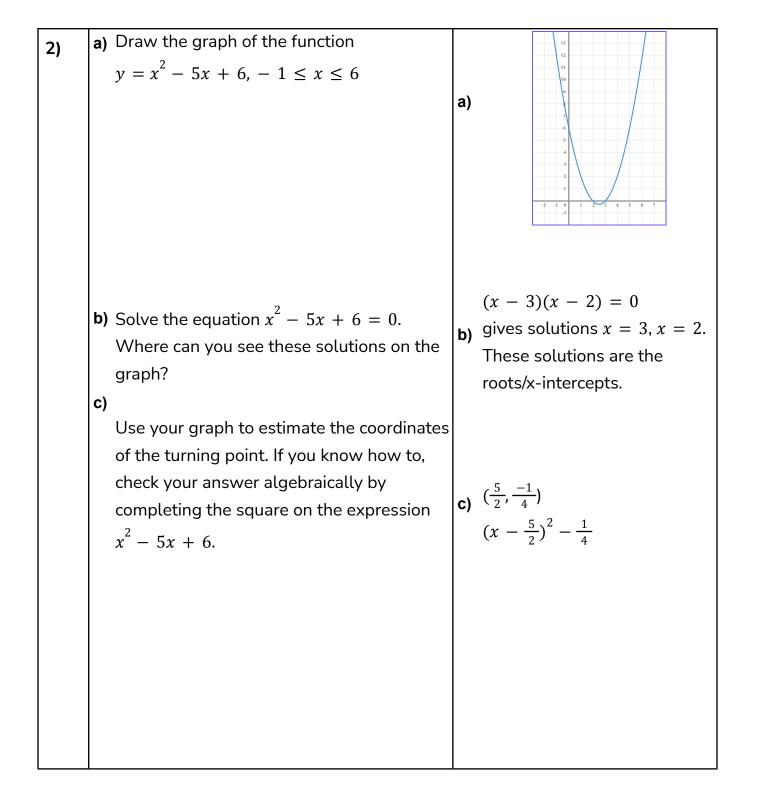
 Vertex (0.4)

 y-intercept (0.4)

 y = x^2 + 4

 No real roots

 Vertex (0.4)


 y-intercept (0.4)



## **Quadratic Graphs - Answers**

|    | Question                                                                                                            | Answer                                                                                                                                                                                                           |
|----|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Applied Questions                                                                                                   |                                                                                                                                                                                                                  |
| 1) | a) Draw the graph of the function<br>$y = x^2 + 2x + 4, -4 \le x \le 2$                                             | (a) $13$ $12$ $12$ $11$ $10$ $9$ $8$ $7$ $6$ $5$ $-4$ $4$ $-3$ $-2$ $-1$ $0$ $1$ $2$ $-4$ $-3$ $-2$ $-1$ $0$ $1$ $2$ $-1$ $-1$ $-1$ $-1$ $-1$ $-1$ $-1$ $-1$                                                     |
|    | b) Use your graph to write down the coordinates of the turning point. Is it a maximum or a minimum?                 | <b>b)</b> (- 1,3)<br>Minimum.                                                                                                                                                                                    |
|    | c) What happens when you try to solve the equation $x^2 + 2x + 4 = 0$ ? Use your graph to explain why this happens. | c) There are no (real) solutions -<br>the quadratic formula doesn't<br>work because you have to<br>square root a negative<br>number. The graph has no<br>x-intercepts so we can tell<br>there are no real roots. |







| 3) | a) Draw the graph of the function<br>$y = 2x + 8 - x^2, -3 \le x \le 5$                                                                                                    | a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <ul> <li>b) Write down the coordinates of the vertex and roots.</li> <li>c) Using the graph, estimate the solutions to the equation 2x + 8 - x<sup>2</sup> = 4.</li> </ul> | <b>b)</b><br>Vertex (1, 9)<br>Roots $x = 4, x = -2$<br><b>c)</b><br>x = -1.2, x = 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    | <b>d)</b> Using the graph, find the solutions to the equation $2x + 8 = x^2$ .                                                                                             | <b>d)</b> $x = 4, x = -2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | e) Using the graph, find the solutions to the equation $2x + 8 - x^2 = 2x + 4$ . Check your answer algebraically.                                                          | e) $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $(-2, 0)$ $($ |



# Quadratic Graphs - Mark Scheme

|    |     | Question                                                                                                                                              | An  | swei                               | r       |                                                                         |            |         |         |         |         |        |     |
|----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------|---------|-------------------------------------------------------------------------|------------|---------|---------|---------|---------|--------|-----|
|    |     | Exam Questions                                                                                                                                        |     |                                    |         |                                                                         |            |         |         |         |         |        |     |
| 1) | (a) | Complete the table of values for<br>$y = x^2 - 5x - 2$                                                                                                | (a) | $egin{array}{c} x \ y \end{array}$ | -1<br>4 | 0<br>-2                                                                 | 1<br>-6    | 2<br>-8 | 3<br>-8 | 4<br>-6 | 5<br>-2 | 6<br>4 | (2) |
|    |     | x         -1         0         1         2         3         4         5         6           y         -6         -6         -2         -2         -2 |     | (1) 4-<br>(1) Al                   | 5 cor   | rect                                                                    | l<br>value | s       | 0       | 0       | -       |        |     |
|    | (b) | On the grid draw the graph of<br>$y = x^2 - 5x - 2$ for values of x<br>from -1 to 6                                                                   |     | -2<br>-2<br>(1) Po<br>(1) Po       | -1      | 3<br>2<br>1<br>1<br>2<br>3<br>3<br>4<br>5<br>5<br>6<br>6<br>7<br>8<br>9 |            | rrectly |         |         |         |        |     |
|    | (c) | Use the graph to find estimates of the solutions to the equation<br>$-4 = x^{2} - 5x - 2$                                                             |     | x = 0<br>(1) Lir<br>(1) So         | ne y :  | =- 4                                                                    | drav       | vn on   | grap    | h       |         |        | (2) |



| 2) | (a) | Write down the turning point of the graph $y = x^2 + 4x - 2$                                    | (a) | (- 2, -<br>(1) Co                       |                          | coord                     | inates                   | 6                                            |        |        |         | (1) |
|----|-----|-------------------------------------------------------------------------------------------------|-----|-----------------------------------------|--------------------------|---------------------------|--------------------------|----------------------------------------------|--------|--------|---------|-----|
|    | (b) | Use the graph to find approximate<br>roots of the equation<br>$x^{2} + 4x + 3 = 5$              | (b) | x = 0.<br>(1) Rea<br>and ind<br>(1) Con | arran<br>dicati          | geme<br>on of             | nt to <i>:</i><br>readir |                                              |        |        |         | (2) |
|    | (c) | Use the graph to find approximate<br>solutions of the equation<br>$5 = x^{2} + 4x - 2$          | (c) | x = 1.<br>(1) Lin<br>(1) Sol            | e y =                    | = 5 dra                   | awn o                    | on graj                                      | ph     |        |         | (2) |
| 3) | (a) | Complete the table of values for<br>$y = 3 - 2x - x^2$ $x -4 -3 -2 -1 0 1 2$ $y -3 -2 -1 0 1 2$ | (a) | x<br>y<br>(1) 4-5                       | -4<br>-5                 | - <b>3</b><br>0<br>ect va | -2<br>3<br>lues          | -1<br>4                                      | 0<br>3 | 1<br>0 | 2<br>-5 | (2) |
|    | (b) | Draw the graph of<br>$y = 3 - 2x - x^2$ for values of x<br>from -4 to 2.                        | (b) | (1) All                                 | -4                       | <sup>3</sup><br>lotted    | -2 -                     | -1<br>-2<br>-3<br>-4<br>-5<br>-6<br>ectly ft |        | -      | 3       | (2) |
|    |     | Use the graph to find estimates of the solutions to the equation<br>$3 - 2x = x^2$              | (c) | (1) Rea<br>indicat<br>(1) Col           | 3, x =<br>arran<br>ion o | = 1<br>geme<br>f read     | nt to :<br>ing x-        | 3 — 2                                        | 2x - x | x = 0  | ) and   | (2) |



| Use the graph to find the coordinates |
|---------------------------------------|
| of the turning point of the graph     |
| $y = 3 - 2x - x^2$                    |

#### Do you have KS4 students who need additional support in maths?

Our specialist tutors will help them develop the skills they need to succeed at GCSE in weekly one to one online revision lessons. Trusted by secondary schools across the UK.

Visit **thirdspacelearning.com** to find out more.

