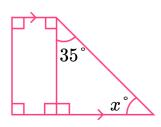


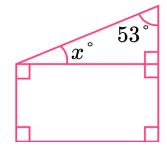

#### Skill

#### Group A - Core skill practice

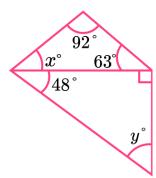
Calculate the missing angle  $\boldsymbol{x}$  in each diagram below. Use properties of quadrilaterals to help you.



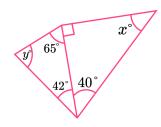




#### **Group B - Complex diagrams**

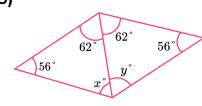
Calculate the missing angles in each diagram.


1)

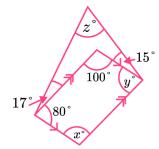



2)

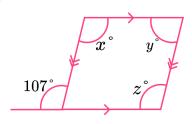



3)

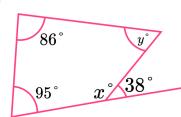



4)

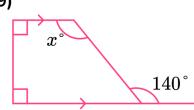



5)

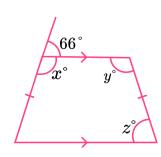



6)

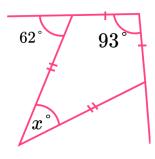



7)

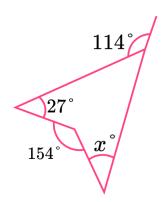



8)




9)



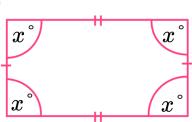

10)



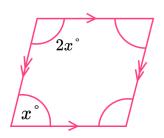
11)



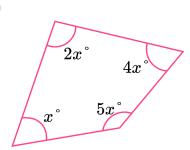
12)



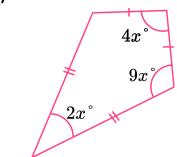




#### Group C - Form and solve equations

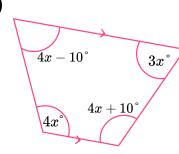
Calculate the value for x by forming and solving an equation for each diagram.


1)

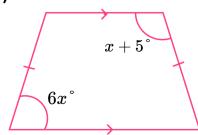



2)

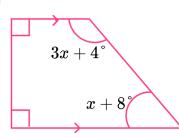



3)

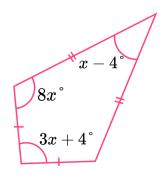



4)

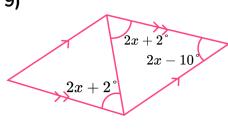



5)

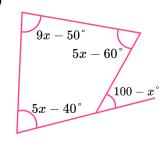



6)

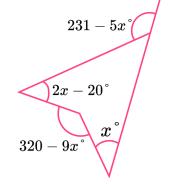



7)

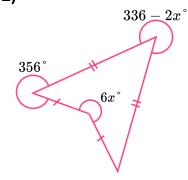



8)




9)

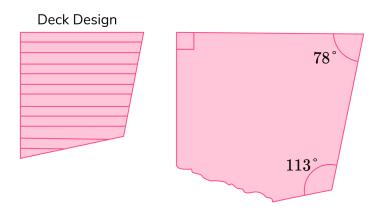



10)



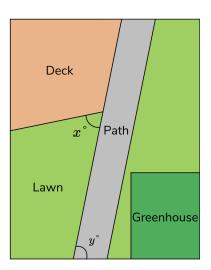
11)




12)

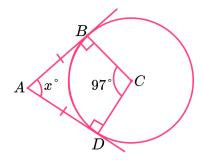




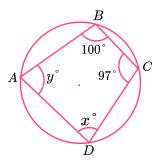

#### **Applied**

1) (a) Below is the design of a deck for a garden.



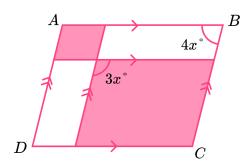

The design was damaged and so one angle is missing off the diagram. What is the size of the missing angle?

(b) The deck is situated at the end of the garden. The path is in the shape of a parallelogram. Use this information to calculate the angles x and y.






2) (a) Two tangents to a circle meet at point A. Calculate the size of angle x.

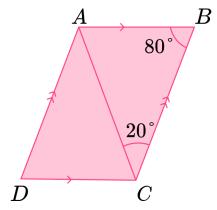



**(b)** *ABCD* is a cyclic quadrilateral (a quadrilateral inscribed inside a circle).



Calculate the values of x and y.

**3) (a)** *ABCD* is a parallelogram made up of 4 smaller parallelograms.




Calculate the value of *x* correct to 1 decimal place.

**(b)** Calculate the angle *BCD* correct to 1 decimal place.




4) (a) ABCD is a parallelogram. Show that the line AC splits the parallelogram into two isosceles triangles.



**(b)** What type of triangles are created when another quadrilateral *EFGH* is a rhombus?

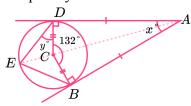
### Angles in a Quadrilateral - Exam Questions


1) (a) Two isosceles triangles are placed next to each other so that they share 1 edge of the same length. Below is a sketch of one orientation of the two triangles.





In the space below, sketch the two other possible orientations. Label all the angles.


(b) If  $x + y = 105^{\circ}$  and  $2y + x = 180^{\circ}$ , calculate the values of x and y.



(7 marks)

2) (a) Two tangents of a circle with centre *C* meet at point *A*. Calculate the angle *BAD*. Explain your answer.



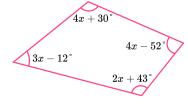


(2)

(b) The line *EA* is a straight line that goes through the centre of the circle.

Calculate the value of the angle *CDE*.

(4)


(6 marks)

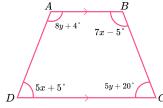


## Angles in a Quadrilateral - Exam Questions

3) (a) Use the information in the diagram to calculate the value for x.

(3)

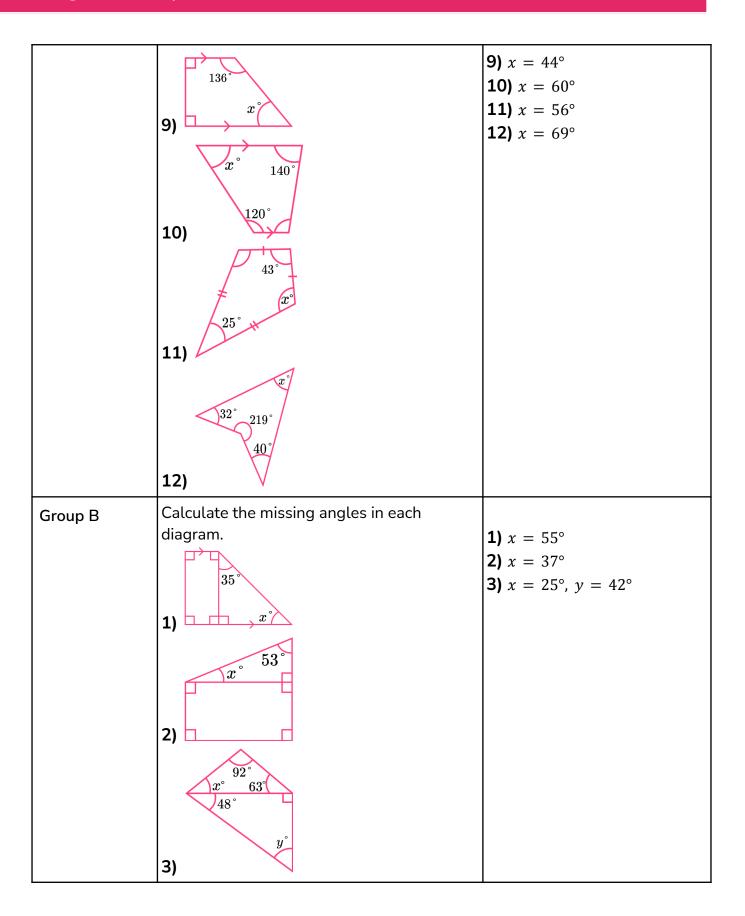



**(b)** Is the quadrilateral in part A a cyclic quadrilateral? Explain your answer.

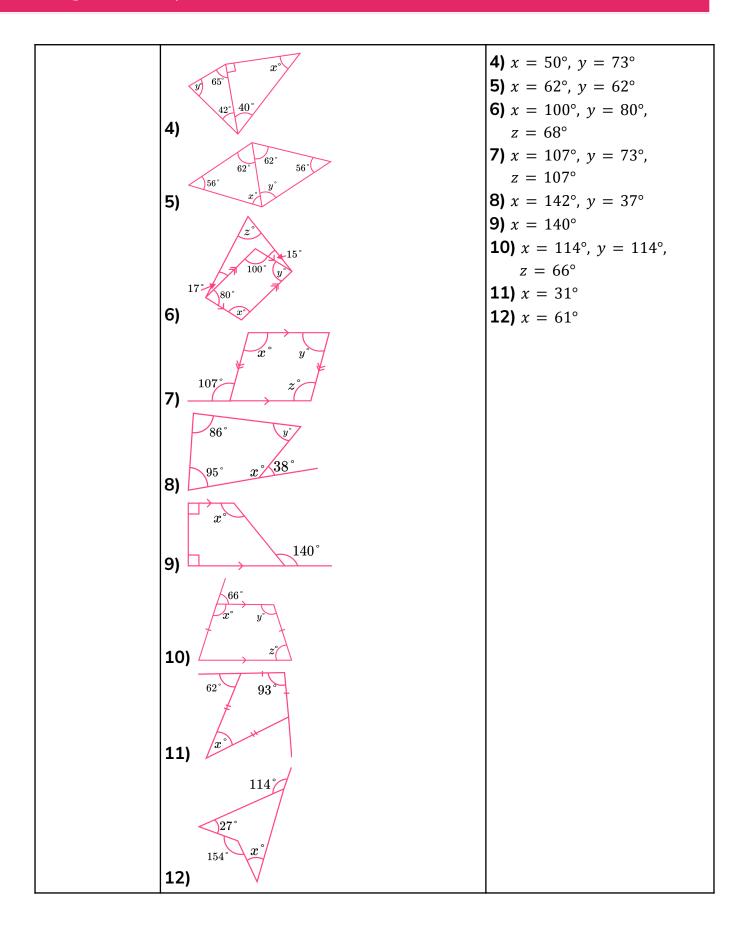
(3)

(6 marks)

4) Show that *ABCD* is an isosceles trapezium.


.....(7 marks)

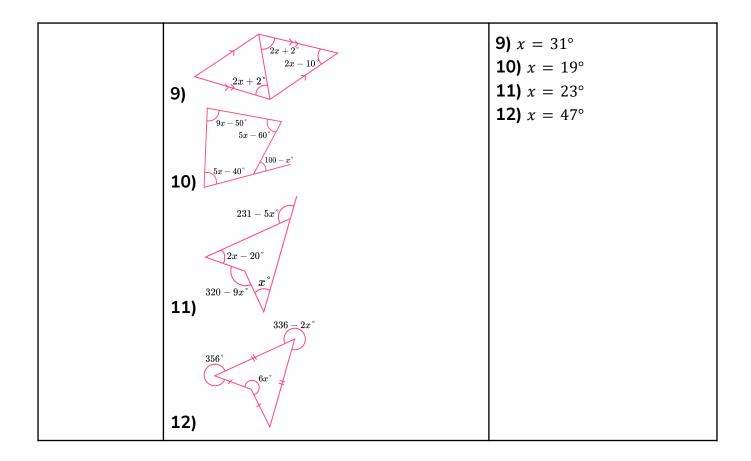





|         | Question                                                                                                                                                                                                                                                     | Answer                                                                                                                                                                                 |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Skill Questions                                                                                                                                                                                                                                              |                                                                                                                                                                                        |
| Group A | Calculate the missing angle $x$ in each diagram below. Use properties of quadrilaterals to help you.  2) $x^{\circ}$ 1) $x^{\circ}$ 3) $x^{\circ}$ $x^{\circ}$ 154 3) $x^{\circ}$ 100 4) $x^{\circ}$ 6) $x^{\circ}$ 108 6) $x^{\circ}$ 123 7) $x^{\circ}$ 8) | 1) $x = 90^{\circ}$<br>2) $x = 90^{\circ}$<br>3) $x = 71^{\circ}$<br>4) $x = 80^{\circ}$<br>5) $x = 85^{\circ}$<br>6) $x = 108^{\circ}$<br>7) $x = 57^{\circ}$<br>8) $x = 104^{\circ}$ |



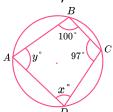









| Group C | Calculate the value for $x$ by forming and |                            |
|---------|--------------------------------------------|----------------------------|
|         | solving an equation for each diagram.      | <b>1)</b> $x = 90^{\circ}$ |
|         | $x^{\circ}$ $x^{\circ}$                    | <b>2)</b> $x = 60^{\circ}$ |
|         |                                            | <b>3)</b> $x = 30^{\circ}$ |
|         | 1) $x^{\circ}$ $x^{\circ}$                 | <b>4)</b> $x = 15^{\circ}$ |
|         |                                            | <b>5)</b> $x = 24^{\circ}$ |
|         | $2x^{\circ}$                               | <b>6)</b> $x = 25^{\circ}$ |
|         |                                            | <b>7)</b> $x = 42^{\circ}$ |
|         | $2) \xrightarrow{x^{\circ}} $              | <b>8)</b> $x = 18^{\circ}$ |
|         | $2x^{\circ}$ $4x^{\circ}$                  |                            |
|         | 3) x° 5x°                                  |                            |
|         | $4x^{\circ}$                               |                            |
|         | $9x^{\circ}$                               |                            |
|         | 4)                                         |                            |
|         | $4x-10^{\circ}$ $3x^{\circ}$               |                            |
|         | $4x + 10^{\circ}$                          |                            |
|         | $x+5^{\circ}$                              |                            |
|         | $6) \xrightarrow{6x^{\circ}}$              |                            |
|         | $3x+4^{\circ}$                             |                            |
|         | 7) x + 8°                                  |                            |
|         | $8x^{\circ}$                               |                            |
|         | $8) \frac{3x+4^{\circ}}{}$                 |                            |



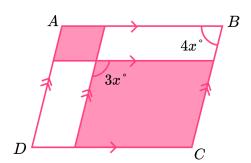





|    | Qu  | Question                                                                                                                                               |     | Answer                                                                                                                                                                                      |  |
|----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|    | Ар  | plied Questions                                                                                                                                        |     |                                                                                                                                                                                             |  |
| 1) | (a) | Below is the design of a deck for a garden.  Deck Design  78  The design was damaged and so one angle                                                  | (a) | $113 + 78 + 90 = 281$ $360 - 281 = 79^{\circ}$                                                                                                                                              |  |
|    |     | is missing off the diagram. What is the size of the missing angle?                                                                                     |     |                                                                                                                                                                                             |  |
|    | (b) | The deck is situated at the end of the garden. The path is in the shape of a parallelogram. Use this information to calculate the angles $x$ and $y$ . | (b) | Angles on a straight line total $180^\circ$ . $x = 180 - 113 = 67^\circ$ $180 - 78 = 102^\circ$ Supplementary angles in a parallelogram sum to total $180^\circ$ $y = 180 - 102 = 78^\circ$ |  |
| 2) | (a) | Two tangents to a circle meet at point $A$ . Calculate the size of angle $x$ .                                                                         | (a) | $x = 360 - (90 + 90 + 97)$ $x = 83^{\circ}$                                                                                                                                                 |  |

**(b)** ABCD is a cyclic quadrilateral (a quadrilateral **(b)** Opposite angles in a cyclic inscribed inside a circle).




Calculate the values of x and y.

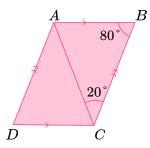
quadrilateral total 180°.

$$x = 180 - 100 = 80^{\circ}$$

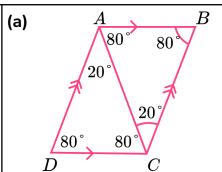
$$y = 180 - 97 = 83^{\circ}$$

(a) ABCD is a parallelogram made up of 4 3) smaller parallelograms.




Calculate the value of *x* correct to 1 decimal place.

**(b)** Calculate the angle *BCD* correct to 1 decimal **(b)**  $BCD = 3x = 77.1^{\circ} (1dp)$ place.


(a) 4x + 3x + 4x + 3x = 36014x = 360 $x = 25.7^{\circ} (1dp)$ 



**4)** (a) ABCD is a parallelogram. Show that the line AC splits the parallelogram into two isosceles triangles.



**(b)** What type of triangles are created when another quadrilateral *EFGH* is it a rhombus?



 $CAB = 80^{\circ}$  (angles in a triangle)

 $CDA = 80^{\circ}$  (opposite angles in a parallelogram are equal)

 $BCD = 100^{\circ}$  (supplementary

angles total  $180^{\circ}$ ) so  $ACD = 80^{\circ}$ 

 $DAC = 20^{\circ}$ 

**(b)** Two isosceles triangles (base to base)



# Angles in a Quadrilateral - Mark Scheme

|        | Question                                                                                                                                                                                                                                              | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |  |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--|
|        | Exam Questions                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |  |
| 1) (a) | Two isosceles triangles are placed next to each other so that they share 1 edge of the same length. Below is a sketch of one orientation of the two triangles.  In the space below, sketch the two other possible orientations. Label all the angles. | $(a) \qquad \qquad y^{\circ} \qquad \qquad x^{\circ} \qquad \qquad y^{\circ} \qquad \qquad x^{\circ} \qquad \qquad y^{\circ} \qquad \qquad y^{\circ} \qquad \qquad x^{\circ} $ | (1)<br>(1)<br>(1)<br>(1) |  |
| (b)    | If $x + y = 105^{\circ}$ and $2y + x = 180^{\circ}$ , calculate the values of $x$ and $y$ .                                                                                                                                                           | (b) $x + y = 105^{\circ}$ $A$ $x + 2y = 180^{\circ}$ $B$ $B - A$ : $y = 75^{\circ}$ When $y = 75^{\circ}$ $x + 75 = 105$ $A$ $-75$ $-75$ $x = 30^{\circ}$ $x = 30^{\circ}$ , $y = 75^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1)<br>(1)               |  |



# Angles in a Quadrilateral - Mark Scheme

| 2) | (a) | Two tangents of a circle with centre $C$ meet at point $A$ . Calculate the angle $BAD$ . Explain your answer.                   | (a) | $180 - 132 = 48^{\circ}$<br>Angles in a quadrilateral total 360°.                                                                                                                                                                                                                            | (1) (1)                  |
|----|-----|---------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|    | (b) | The line <i>EA</i> is a straight line that goes through the centre of the circle. Calculate the value of the angle <i>CDE</i> . | (b) | CDE is isosceles as $CD = DE = \text{radius}$<br>CED = CDE<br>360 - 132 = 228<br>$ECD = 228 \div 2 = 114$<br>Angle at the centre is twice the angle at the circumference so $BED = 132 \div 2 = 66^{\circ}$<br>So $CED = 66 \div 2 = 33^{\circ}$<br>y = 180 - (114 + 33)<br>$y = 33^{\circ}$ | (1)<br>(1)<br>(1)<br>(1) |
| 3) | (a) | Use the information in the diagram to calculate the value for $x$ . $4x + 30^{\circ}$ $4x - 52^{\circ}$ $2x + 43^{\circ}$       | (a) | $4x + 30 + 4x - 52 + 2x + 43 + 3x$ $-12 = 360$ $13x + 9 = 360$ $13x = 351$ $x = 27^{\circ}$                                                                                                                                                                                                  | (1)                      |
|    | (b) | Is the quadrilateral in part A a cyclic quadrilateral? Explain your answer.                                                     | (b) | No because opposite angles in a cyclic quadrilateral total 180° and the angles in the quadrilateral are: 138°, 97°, 69°, 56°                                                                                                                                                                 | (3)                      |
| 4) |     | Show that $ABCD$ is an isosceles trapezium. $ A B B B B B B B B B B B B B B B B B B B$                                          | (a) | 7x - 5 = 8y + 4 $+5$ $+5$ $7x = 8y + 9$ $-8y$ $-8y$ $-8y$ $-8y$                                                                                                                                                                                                                              | (1)                      |



## Angles in a Quadrilateral - Mark Scheme

$$5x + 5 = 5y + 20$$

$$-5 \qquad -5$$

$$5x = 5y + 15$$

$$-5y \qquad -5y$$

$$5x - 5y = 15$$

$$x - y = 3$$

$$7x - 8y = 9 \qquad A$$

$$x - y = 3 \qquad B$$

$$B \times 7: 7x - 7y = 21 \qquad C$$

$$C - B: 7x - 7y = 21$$

$$-7x + 8y = -9$$

$$0 + y = 12^{\circ}$$

$$When y = 12, \quad B \quad x - 12 = 3$$

$$+12 \qquad +12$$

$$x = 15^{\circ}$$

$$8y + 4: 8 \times 12 + 4 = 100^{\circ}$$

$$7x - 5: 7 \times 15 - 5 = 100^{\circ}$$

$$5x + 5: 5 \times 15 + 5 = 80^{\circ}$$

$$5y + 20: 5 \times 12 + 20 = 80^{\circ}$$

$$4BCD \text{ is an isosceles trapezium}$$

$$(1)$$

#### Do you have KS4 students who need additional support in maths?

Our specialist tutors will help them develop the skills they need to succeed at GCSE in weekly one to one online revision lessons. Trusted by secondary schools across the UK.

Visit thirdspacelearning.com to find out more.