Adding and Subtracting Surds - Worksheet

Skill

Group A - Adding and subtracting surds

Simplify:

1)
$$4\sqrt{2} + 3\sqrt{2}$$

2)
$$4\sqrt{2} - 3\sqrt{2}$$

3)
$$3\sqrt{2} - 4\sqrt{2}$$

4)
$$6\sqrt{3} + 2\sqrt{3} - \sqrt{3}$$

5)
$$3\sqrt{6} + 6\sqrt{3}$$

6)
$$2\sqrt{3} - 5\sqrt{3} + 4\sqrt{7}$$

7)
$$\sqrt{3} + \sqrt{12}$$

8)
$$\sqrt{12} - 2\sqrt{3}$$

9)
$$\sqrt{27} + 4\sqrt{3}$$

10)
$$\sqrt{5} + \sqrt{20}$$

11)
$$\sqrt{28} - \sqrt{7}$$

12)
$$\sqrt{20} - 3\sqrt{5} + \sqrt{9}$$

Group B - Adding and subtracting surds

Simplify:

1)
$$6\sqrt{2} + 7\sqrt{2} - 9\sqrt{2}$$

2)
$$6\sqrt{2} - 12\sqrt{2}$$

3)
$$6\sqrt{2} - 4 + 7\sqrt{2} + \sqrt{100}$$

4)
$$\sqrt{3} + \sqrt{75}$$

5)
$$\sqrt{48} - \sqrt{3}$$

6)
$$\sqrt{180} + 3\sqrt{5}$$

7)
$$\sqrt{8} + \sqrt{18}$$

8)
$$\sqrt{12} + \sqrt{27}$$

9)
$$\sqrt{8} + \sqrt{12}$$

10)
$$\sqrt{80} - \sqrt{45}$$

11)
$$\sqrt{125} - \sqrt{20}$$

12)
$$\sqrt{80} - \sqrt{20}$$

Group C - Adding and subtracting surds

Simplify:

1)
$$2\sqrt{20} + 3\sqrt{5}$$

2)
$$\sqrt{48} - 2\sqrt{3}$$

3)
$$6\sqrt{15} + 2\sqrt{3} + 2\sqrt{12}$$

4)
$$\sqrt{18} - \sqrt{8}$$

5)
$$\sqrt{45} - \sqrt{20}$$

6)
$$\sqrt{99} - \sqrt{44}$$

7)
$$\sqrt{32} + \sqrt{162}$$

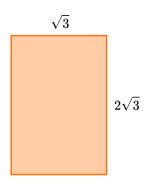
8)
$$\sqrt{98} - \sqrt{50}$$

9)
$$\sqrt{32} + \sqrt{98} - 4\sqrt{50}$$

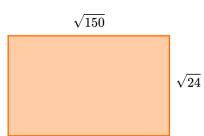
10)
$$2\sqrt{80} + 4\sqrt{20}$$

11)
$$2\sqrt{20} + 4\sqrt{60}$$

12)
$$3\sqrt{12} + 4 - \sqrt{81} + 2\sqrt{27}$$



Adding and Subtracting Surds - Worksheet


Applied

1) Find the perimeter of this rectangle, giving your answer as a surd in its simplest form.

(a)

(b)

- 2) (a) Ben writes: $\sqrt{2} + \sqrt{8} = \sqrt{10}$ He is wrong. What mistake has he made?
 - **(b)** What is the correct answer?
- 3) (a) Sarah writes: $\sqrt{45} + \sqrt{15} = 9\sqrt{5} + 3\sqrt{5} = 12\sqrt{5}$ She is wrong. What mistake has she made?
 - **(b)** What is the correct answer?
- **4)** (a) What type of sequence is: 2, 8, 18, 32, 50? Find the *nth* term rule for this sequence.
 - (b) What type of sequence is: $\sqrt{2}$, $\sqrt{8}$, $\sqrt{18}$, $\sqrt{32}$, $\sqrt{50}$? Find the nth term rule for this sequence.
 - (c) What is the algebraic link between the two sequences?

Adding and Subtracting Surds - Exam Questions

- 1) (a) Express $\sqrt{7} + \sqrt{63}$ in the form $a\sqrt{7}$ where a is an integer to be found. (2)
 - (b) Express $6\sqrt{5} \sqrt{20}$ in the form $a\sqrt{5}$ where a is an integer to be found. (2) (4 marks)
- 2) Simplify fully $\sqrt{96} + \sqrt{24}$. (3 marks)
- 3) Simplify fully $\sqrt{75} \sqrt{27}$. (3 marks)
- 4) Simplify fully: (3 marks) $\sqrt{52} + \sqrt{\frac{13}{4}}$

Write your answer in the form $\frac{a\sqrt{13}}{b}$, where a and b are integers to be found.

	Question	Answer
	Skill Questions	
Group A	Simplify:	
-	1) $4\sqrt{2} + 3\sqrt{2}$	1) $7\sqrt{2}$
	2) $4\sqrt{2} - 3\sqrt{2}$	$2)$ $\sqrt{2}$
	3) $3\sqrt{2} - 4\sqrt{2}$	3) $-\sqrt{2}$
	4) $6\sqrt{3} + 2\sqrt{3} - \sqrt{3}$	4) $7\sqrt{3}$
	5) $3\sqrt{6} + 6\sqrt{3}$	5) $3\sqrt{6} + 6\sqrt{3}$
	6) $2\sqrt{3} - 5\sqrt{3} + 4\sqrt{7}$	6) $4\sqrt{7} - 3\sqrt{3}$
	7) $\sqrt{3} + \sqrt{12}$	7) 3√3
	8) $\sqrt{12} - 2\sqrt{3}$	8) 0
	9) $\sqrt{27} + 4\sqrt{3}$	9) $7\sqrt{3}$
	10) $\sqrt{5} + \sqrt{20}$	10) $3\sqrt{5}$
	11) $\sqrt{28} - \sqrt{7}$	11) $\sqrt{7}$
	12) $\sqrt{20} - 3\sqrt{5} + \sqrt{9}$	12) $3 - \sqrt{5}$
Group B	Simplify:	
	1) $6\sqrt{2} + 7\sqrt{2} - 9\sqrt{2}$	$\mathbf{1)} \ 4\sqrt{2}$
	2) $6\sqrt{2} - 12\sqrt{2}$	2) $-6\sqrt{2}$
	3) $6\sqrt{2} - 4 + 7\sqrt{2} + \sqrt{100}$	3) $6 + 13\sqrt{2}$
	4) $\sqrt{3} + \sqrt{75}$	4) $6\sqrt{3}$
	5) $\sqrt{48} - \sqrt{3}$	5) 3√3
	6) $\sqrt{180} + 3\sqrt{5}$	6) 9√5
	7) $\sqrt{8} + \sqrt{18}$	7) $5\sqrt{2}$
	8) $\sqrt{12} + \sqrt{27}$	8) 5√3
	9) $\sqrt{8} + \sqrt{12}$	9) $2\sqrt{3} + 2\sqrt{2}$
	10) $\sqrt{80} - \sqrt{45}$	10) $\sqrt{5}$
	11) $\sqrt{125} - \sqrt{20}$	11) $3\sqrt{5}$
	12) $\sqrt{80} - \sqrt{20}$	12) $2\sqrt{5}$

Group C

Simplify:

1)
$$2\sqrt{20} + 3\sqrt{5}$$

2)
$$\sqrt{48} - 2\sqrt{3}$$

3)
$$6\sqrt{15} + 2\sqrt{3} + 2\sqrt{12}$$

4)
$$\sqrt{18} - \sqrt{8}$$

5)
$$\sqrt{45} - \sqrt{20}$$

6)
$$\sqrt{99} - \sqrt{44}$$

7)
$$\sqrt{32} + \sqrt{162}$$

8)
$$\sqrt{98} - \sqrt{50}$$

9)
$$\sqrt{32} + \sqrt{98} - 4\sqrt{50}$$

10)
$$2\sqrt{80} + 4\sqrt{20}$$

11)
$$2\sqrt{20} + 4\sqrt{60}$$

12)
$$3\sqrt{12} + 4 - \sqrt{81} + 2\sqrt{27}$$

1)
$$7\sqrt{5}$$

2)
$$2\sqrt{3}$$

3)
$$6\sqrt{15} + 6\sqrt{3}$$

4)
$$\sqrt{2}$$

6)
$$\sqrt{11}$$

7)
$$13\sqrt{2}$$

8)
$$2\sqrt{2}$$

9)
$$-9\sqrt{2}$$

10)
$$16\sqrt{5}$$

11)
$$8\sqrt{15} + 4\sqrt{5}$$

12)
$$12\sqrt{3} - 5$$

	Question		Answer	
	Ар	plied Questions		
1)	(a)	Find the perimeter of this rectangle, giving your answer as a surd in its simplest form. $\sqrt{3}$	(a)	$6\sqrt{3}$
		$2\sqrt{3}$		
	(b)	$\sqrt{150}$	(b)	$14\sqrt{6}$
		$\sqrt{24}$		
2)	(a)	Ben writes: $\sqrt{2} + \sqrt{8} = \sqrt{10}$ He is wrong. What mistake has he made?	(a)	He has just added the numbers underneath the root signs. He can't do this because they are
	(b)	What is the correct answer?	(b)	not like surds.
				$\sqrt{2} + \sqrt{8} = \sqrt{2} + 2\sqrt{2} = 3\sqrt{2}$
3)	(a)	Sarah writes:	(a)	She has tried to make like surds
		$\sqrt{45} + \sqrt{15} = 9\sqrt{5} + 3\sqrt{5} = 12\sqrt{5}$ She is wrong. What mistake has she		of $\sqrt{5}$. She hasn't square rooted
		made?		the square factor of 9 in $\sqrt{45}$. It's also incorrect to remove 3
	(b)			as a factor of 15, because 3 isn't
	(5)	What is the correct answer?		a square number.
			(b)	$\sqrt{45} + \sqrt{15} = 3\sqrt{5} + \sqrt{15}$ which will not simplify further.

4)	(a)	What type of sequence is:	(a)	Quadratic, nth term $2n^2$
		2, 8, 18, 32, 50? Find the <i>nth</i> term rule for this sequence.		
	(b)	What type of sequence is: $\sqrt{2}$, $\sqrt{8}$, $\sqrt{18}$, $\sqrt{32}$, $\sqrt{50}$? Find the nth term rule for this sequence.	(b)	Arithmetic, nth term $\sqrt{2}n$
	(c)	What is the algebraic link between the two sequences?	(c)	$\operatorname{Link}\sqrt{2n^2} = \sqrt{2}n$

Adding and Subtracting Surds - Mark Scheme

		Question	Answer	
		Exam Questions		
1)	(a)	Express $\sqrt{7} + \sqrt{63}$ in the form $a\sqrt{7}$ where a is an integer to be found.	(a) $\sqrt{63} = 3\sqrt{7}$ $\sqrt{7} + 3\sqrt{7} = 4\sqrt{7}, a = 4$	(2)
	(b)	Express $6\sqrt{5} - \sqrt{20}$ in the form $a\sqrt{5}$ where a is an integer to be found.	(b) $\sqrt{20} = 2\sqrt{5}$ $6\sqrt{5} - 2\sqrt{5} = 4\sqrt{5}, a = 4$	(2)
2)		Simplify fully $\sqrt{96} + \sqrt{24}$.	$\sqrt{96} = 4\sqrt{6}$ $\sqrt{24} = 2\sqrt{6}$ $4\sqrt{6} + 2\sqrt{6} = 6\sqrt{6}$	(3)
3)		Simplify fully $\sqrt{75} - \sqrt{27}$.	$\sqrt{75} = 5\sqrt{3}$ $\sqrt{27} = 3\sqrt{3}$ $5\sqrt{3} - 3\sqrt{3} = 2\sqrt{3}$	(3)
4)		Simplify fully: $\sqrt{52} + \sqrt{\frac{13}{4}}$ Write your answer in the form $\frac{a\sqrt{13}}{b}$, where a and b are integers to be found.	$\sqrt{52} = 2\sqrt{13}$ $\sqrt{\frac{13}{4}} = \frac{\sqrt{13}}{2}$ $2\sqrt{13} + \frac{\sqrt{13}}{2} = \frac{5\sqrt{13}}{2}$	(3)

Do you have KS4 students who need additional support in maths?

Our specialist tutors will help them develop the skills they need to succeed at GCSE in weekly one to one online revision lessons. Trusted by secondary schools across the UK.

Visit **thirdspacelearning.com** to find out more.