

Skill

Group A - Visualising lines in 3D

Using the diagram provided, draw the lines highlighted in each question.

Using the diagram provided, draw the lines highlighted in each question. The point X divides the line *BC* in the ratio 1: 3 and *M* is the midpoint of *EF*.

Group B - Determine the rule/formula

Use the flowchart to help you determine whether you need to use Pythagoras' Theorem / Trigonometric Ratios / The Sine Rule / The Cosine Rule to find the missing side or angle in each triangle.

Group C - Find the missing side or angle

Use what you found in question 2 to calculate the value of x or for each triangle.

Applied

1) Box Hill in Surrey is one of Britain's most iconic climbs. The average gradient of Box Hill is 5% or 2.86°. This is represented in the diagram below.

- (a) If the total height of the incline is 129m, calculate the slope length *CE*. Write your answer in kilometres.
- (b) The angle $ECF = 60^{\circ}$. Calculate the distance CF in kilometres.
- **2)** Three snails set off in different directions. After 10 minutes, their distance from each other is recorded. The diagram below shows the results.

(a) Calculate the angle *CAB* labelled θ to 2 decimal places.

(b) A flag is placed at the centre of the diagram. The angle of elevation of the top of the flag from snail B is 78°. If B travelled 3. 6cm from the start line, calculate the height of the flagpole.

3) *ABCDEFGH* is a cuboid. A tarpaulin is attached to the points *E*, *B*, and *M*. *M* is a midpoint on the line *CH*.

- (a) Calculate the length *EM*.
- (b) Calculate the length *BE*.
- (c) Calculate the length *BME*.

1) VABCD is a square based pyramid. Angle $VMC = 90^{\circ}$ Angle $VCM = 60^{\circ}$ $CD = 6\sqrt{6}$

Calculate the vertical height of the pyramid VM.

M

 $6\sqrt{6}cm$

(5 marks)

Using the information on the diagram, calculate the size of angle ACF labelled θ . Show all your working.

(4 marks)

3) The diagram below shows a cone with the apex A, 15cm directly above X. The radius of the base is 12cm. XY is a straight line through the centre C, and the displacement of X from C is 8cm.

(a) Using this information, calculate the angle *XCA* correct to 3 significant figures.

(b) Calculate the length AY.

(3)

(3)

(c) Use your answers to part (a) and (b) to find the angle *CAY*.

(3) (9 marks)

4) ABCDEFGH is a cube with side length 4 cm. The point X lies on the line GH where GX: XH = 1:3.

(a) Calculate the length of *EX*.

(b) Calculate the length of AX.

(6)

(3)

(c) Given that the length of $AE = 4\sqrt{2} \ cm$, use your answers to part a) and b) to calculate the size of the angle *AEX* to 3 significant figures.

(4) (13 marks)

5) The ramp *ABCDEF* is a triangular prism. *BCEF* is a rectangle.

Calculate the length of the line CF.

(5 marks)

	Question	Answer
	Skill Questions	
Group A	Using the diagram provided, draw the lines highlighted in each question. 1) <i>HF</i>	
	2) BE	2) B
	3) CG	3)
	4) AC, CE	4)
	5) <i>BD</i> , <i>DF</i>	5)
	6) AF, EF	6)
	E D C	

Helping schools close the maths attainment gap through targeted one to one teaching and flexible resources

Group A contd	Using the diagram provided, draw the lines highlighted in each question. The point x divides the line <i>BC</i> in the ratio 1: 3 and <i>M</i> is the midpoint of <i>EF</i> . 7) <i>DX</i> , <i>FX</i> , <i>DF</i>	7)
	8) HX, MX, HM 9) GD, DX, BX, BG	B) B) B) B) B) B) B) B) C) C)<
Group B	Use the flowchart to help you determine whether you need to use Pythagoras' Theorem / Trigonometric Ratios / The Sine Rule / The Cosine Rule to find the missing side or angle in each triangle. 1) 34 26 x	1) Pythagoras' Theorem
	2) 8.4 10.5 θ	SOHCAHIOA

Helping schools close the maths attainment gap through targeted one to one teaching and flexible resources

	Q	uestion	An	iswer
	Ap	oplied Questions		
1)		Box Hill in Surrey is one of Britain's most iconic climbs. The average gradient of Box Hill is 5% or 2. 86°. This is represented in the diagram below.		
	a)	If the total height of the incline is 129 <i>m</i> , calculate the slope length <i>CE</i> . Write your answer in kilometres.	a)	2. 585 <i>km</i>
	b)	The angle $ECF = 60^{\circ}$. Calculate the distance <i>CF</i> in kilometres.	b)	5. 17 km
2)		Three snails set off in different directions. After 10 <i>minutes</i> , their distance from each other is recorded. The diagram below shows the results.		
	a)	Calculate the angle <i>CAB</i> labelled θ to 2 decimal places.	a)	61. 17 [°]

ABCDEFGH is a cuboid. A tarpaulin is attached to the points <i>E</i> , <i>B</i> , and <i>M</i> . <i>M</i> is a midpoint on the line <i>CH</i> . $\int_{a_m}^{b_m} \int_{a_m}^{c_m} \int_{a_m}^{c_$	a) b)	6. 472 cm 7. 93 cm 99. 9°
	ABCDEFGH is a cuboid. A tarpaulin is attached to the points <i>E</i> , <i>B</i> , and <i>M</i> . <i>M</i> is a midpoint on the line <i>CH</i> . $\int_{a}^{b} \int_{a}^{b} \int_{a}^{b}$	ABCDEFGH is a cuboid. A tarpaulin is attached to the points <i>E</i> , <i>B</i> , and <i>M</i> . <i>M</i> is a midpoint on the line <i>CH</i> . $\int_{4m}^{4m} \int_{3m}^{0} \int_{18^{\circ}}^{0} \int$

	Question	Answer	
	Exam Questions		
1)	$VABCD \text{ is a square based pyramid.}$ Angle $VMC = 90^{\circ}$ Angle $VCM = 60^{\circ}$ $CD = 6\sqrt{6}$ Calculate the vertical height of the pyramid VM.	Right angle triangle drawn: C $3\sqrt{6}cm$ $3\sqrt{6}cm$ Find the hypotenuse (<i>CM</i>): $(3\sqrt{6})^2 + (3\sqrt{6})^2 = CM^2$ $CM = \sqrt{108} \text{ or } 6\sqrt{3}$ New triangle drawn: V 60° $M = 6\sqrt{3}cm$ or $\tan(60) = \frac{VM}{6\sqrt{3}}$ VM = 18cm	 (1) (1) (1) (1) (1)
2)	The diagram below shows a cone with the apex A, 15 cm directly above X. The radius of the base is 12 cm. XY is a straight line through the centre C, and the displacement of X from C is 8 cm.		

(a)	Using this information, calculate the angle <i>XCA</i> correct to 3 significant figures.	(a)	Right angle triangle drawn: ^A 15cm θ x 8cm c $\tan^{-1}\left(\frac{15}{8}\right) = \theta$ $\theta = 61.9^{\circ}(3sf)$	(1) (1) (1)
(b)	Calculate the length AY.	(b)	AY2 = 202 + 152 $AY2 = 625$ $AY = 25 cm$	 (1) (1) (1)
(c)	Use your answers to part a) and b) to find the angle <i>CAY</i> .	(c)	Triangle drawn: ^A θ 25cm 118.1° c 12cm Y $\frac{\sin(118.1)}{25} = \frac{\sin(\theta)}{12}$ $\theta = 25.1^{\circ}$	(1)(1)(1)
3)	Shape <i>ABCDEFGH</i> is a cuboid. $ \begin{array}{c} G \\ I \\ I$		$19^{2} + 12^{2} = 505$ $AC = \sqrt{505}$ $\theta = \tan^{-1}(\frac{15}{\sqrt{505}})$ $\theta = 33.72^{\circ}$	 (1) (1) (1) (1)

(c)	Given that the length of $AE = 4\sqrt{2} \ cm$, use your answers to part a) and b) to calculate the size of the angle <i>AEX</i> to 3 significant figures.	(c)	Triangle drawn: A $\sqrt{33}cm$ X $4\sqrt{2}cm$ 5cm	
			Cosine rule stated: $A = \cos^{-1}(\frac{b^2 + c^2 - a^2}{2bc})$	(1)
			$\theta = \cos^{-1}(\frac{32+25-33}{2\times5\times4\sqrt{2}}) = \cos^{-1}(0.424)$	(1)
			$\theta = 64.9^{\circ} (3sf)$	(1)
5)	The ramp <i>ABCDEF</i> is a triangular prism. <i>BCEF</i> is a rectangle.		$BD^{2} = 3^{2} + 5^{2}$ $BD = \sqrt{34}$	(1) (1)
	F $T2^{\circ}$ C $3m$ B D		Triangle drawn:	
	Calculate the length of the line <i>CF</i> .		18°	
			E $\sqrt{34}m$ C	(1)
			$CF = \frac{\sqrt{34}}{\cos(18)}$	(1)
			CF = 6.13 m	(1)

